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1 Introduction

RAVEN is a software framework able to perform parametric and stochastic analysis based on the
response of complex system codes. The initial development was aimed at providing dynamic risk
analysis capabilities to the thermohydraulic code RELAP-7, currently under development at Idaho
National Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now
a multi-purpose stochastic and uncertainty quantification platform, capable of communicating with
any system code.

In fact, the provided Application Programming Interfaces (APIs) allow RAVEN to interact with
any code as long as all the parameters that need to be perturbed are accessible by input files or via
python interfaces. RAVEN is capable of investigating system response and explore input space us-
ing various sampling schemes such as Monte Carlo, grid, or Latin hypercube. However, RAVEN
strength lies in its system feature discovery capabilities such as: constructing limit surfaces, sepa-
rating regions of the input space leading to system failure, and using dynamic supervised learning
techniques.

The development of RAVEN started in 2012 when, within the Nuclear Energy Advanced Mod-
eling and Simulation (NEAMS) program, the need to provide a modern risk evaluation framework
arose. RAVEN’s principal assignment is to provide the necessary software and algorithms in order
to employ the concepts developed by the Risk Informed Safety Margin Characterization (RISMC)
program. RISMC is one of the pathways defined within the Light Water Reactor Sustainability
(LWRS) program.

In the RISMC approach, the goal is not just to identify the frequency of an event potentially
leading to a system failure, but the proximity (or lack thereof) to key safety-related events. Hence,
the approach is interested in identifying and increasing the safety margins related to those events.
A safety margin is a numerical value quantifying the probability that a safety metric (e.g. peak
pressure in a pipe) is exceeded under certain conditions.

Most of the capabilities, implemented having RELAP-7 as a principal focus, are easily de-
ployable to other system codes. For this reason, several side activates have been employed (e.g.
RELAP5-3D, any MOOSE-based App, etc.) or are currently ongoing for coupling RAVEN with
several different software. The aim of this document is to detail the input requirements for RAVEN
focusing on the input structure.
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2 Manual Formats

In order to highlight some parts of the Manual having a particular meaning (e.g. input structure,
examples, terminal commands, etc.), specific formats have been used. In this sections all the
formats with a specific meaning are reported:

• Python Coding:

class AClass():
def aMethodImplementation(self):

pass

• XML input example:

<MainXMLBlock>
...
<anXMLnode name=’anObjectName’ anAttribute=’aValue’>

<aSubNode>body</aSubNode>
</anXMLnode>
...

</MainXMLBlock>

• Bash Commands:

cd trunk/raven/
./raven_libs_script.sh
cd ../../
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3 Installation

The installation of the RAVEN code is a straightforward procedure; depending on the usage pur-
pose and machine architecture, the installation process slightly differs.
In the following sections, all the different installation procedures are reported.

3.1 Framework Source Install

3.1.1 Unpacking The Source

Untar the source install (if there is more than one version of the source tarball, the full filename
will need to be used instead of *):

tar -xvzf raven_framework_*_source.tar.gz

3.1.2 Dependencies

RAVEN has a number of dependencies that must be installed before it can be used, the recom-
mended minimum versions are:

1. numpy-1.7.0

2. hdf5-1.8.12

3. Cython-0.18

4. h5py-2.2.1

5. scipy-0.12.0

6. scikit-learn-0.14.1

7. matplotlib-1.4.0

Older versions may work, but it is highly recommended to use these minimum versions. You
may install these dependencies yourself, or by running the raven libs script.sh script pro-
vided within the RAVEN distribution:

cd full_path_to_raven_distribution/raven/
./raven_libs_script.sh
cd ../../

13



3.1.3 Compilation

First, CROW must be compiled. This can be done either with the python setup or with a makefile.

Using the setup.py file:

cd trunk/crow/
python setup.py build_ext build install --user

Using the makefile:

cd trunk/crow/
make -f Makefile.linux

3.1.4 Running the Test Suite

Next, the tests should be run (you may need to change the cd command if you are not in the crow
directory):

cd ../raven/
./run_tests --re=framework --skip-config-check

The output should describe why any tests failed. At the end, there should be a line that looks
similar to the output below:

8 passed, 19 skipped, 0 pending, 0 failed

Normally there are skipped tests because either some of the codes are not available, or some of
the test are not currently working. The output will explain why each is skipped.

3.2 Ubuntu Framework Install

3.2.1 Dependencies

Install the dependencies using the command:

sudo apt-get install libtool python-dev swig g++ python3-dev \
python-numpy python-sklearn python-h5py

Optionally, if you want to be able to edit and rebuild the manual, you can install TEX Live and
its related packages:
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sudo apt-get install texlive-latex-base texlive-extra-utils \
texlive-latex-extra texlive-math-extra

3.2.2 Installation

Untar the binary (if there is more than one version of the binary, the full filename will need to be
used instead of *):

tar -xvzf raven_framework_*_ubuntu.tar.gz

3.2.3 Running the Test Suite

Run the tests:

cd trunk/raven/
./run_tests --re=framework --skip-config-check

The output should describe why any tests failed. At the end, there should be a line that looks
similar to the output below:

8 passed, 19 skipped, 0 pending, 0 failed

Normally there are skipped tests because either some of the codes are not available, or some of
the test are not currently working. The output will explain why each is skipped.

3.3 Fedora Framework Install

3.3.1 Dependencies

Install the dependencies:

yum install swig libtool gcc-c++ python-devel python3-devel \
numpy h5py scipy python-scikit-learn python-matplotlib-qt4

Optionally, if you want to be able to edit and rebuild the manual, you can install TEX Live and
its related packages:
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yum install texlive texlive-subfigure texlive-stmaryrd
texlive-titlesec texlive-preprint

3.3.2 Installation

Untar the binary (if there is more than one version of the binary, the full filename will need to be
used instead of *):

tar -xvzf raven_framework_*_fedora.tar.gz

3.3.3 Running The Test Suite

Run the tests:

cd trunk/raven/
./run_tests --re=framework --skip-config-check

The output should describe why any tests failed. At the end, there should be a line that looks
similar to the output below:

8 passed, 19 skipped, 0 pending, 0 failed

Normally there are skipped tests because either some of the codes are not available, or some of
the test are not currently working. The output will explain why each is skipped.

3.4 OSX Framework Install

Open up the file raven libs framework and crow.dmg. Next, Open up the raven libs.pkg
inside, and install it. The files will be installed into /opt/raven libs. Your .bash profile
will be modified to source the /opt/raven libs/environments/raven libs profile
file. This file sets up the environment variables PYTHONPATH and PATH so that the raven framework
command can be used.
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3.5 MOOSE and RAVEN Source Install

3.5.1 MOOSE, RELAP-7, and Other Dependencies

First, MOOSE should be installed. Follow the instructions for MOOSE listed here: http://
mooseframework.org/getting-started/.

Next, if the portion of RAVEN in C++ is desired, RELAP-7 needs to be installed. Follow the
RELAP-7 instructions available at https://hpcgitlab.inl.gov/idaholab/relap-7

Ensure that MOOSE and RELAP-7 are installed in the same directory level.

Once any proxy variables are setup (such as http proxy and https proxy) and the moose
dependencies are setup, the commands are roughly:

git clone https://github.com/idaholab/moose.git
cd moose/scripts
./update_and_rebuild_libmesh.sh
cd ../../
git clone git@hpcgitlab.inl.gov:idaholab/relap-7.git
cd relap-7
git submodule update --init contrib/iapws
cd ..

3.5.2 Obtaining CROW and RAVEN

Then clone CROW and RAVEN:

git clone git@hpcgitlab.inl.gov:idaholab/crow.git
git clone git@hpcgitlab.inl.gov:idaholab/raven.git

Install the RAVEN dependencies via one of the methods mentioned for the RAVEN framework
(see Section 3.1.2). Some of the moose framework setup methods will already include the raven
dependencies.

3.5.3 Compilation

Then compile RAVEN:

cd raven
make
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Note that if there are multiple processors available, make can accept a -j option that specifies
the number of processors to use, so if there are eight processors available the following will run
faster:

make -j8

3.5.4 Running The Test Suite

Then run the tests:

./run_tests

The output should describe why any tests failed. At the end, there should be a line that looks
similar to the output below:

8 passed, 19 skipped, 0 pending, 0 failed

Normally there are skipped tests because either some of the codes are not available, or some of
the test are not currently working. The output will explain why each is skipped.
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4 Running RAVEN

The RAVEN code is a blend of C++, C, and Python software. The entry point resides on the
Python side and is accessible via a command line interface. After following the instructions in
the previous Section, RAVEN is ready to be used. The RAVEN driver is contained in the folder
“raven/framework.” To run RAVEN, open a terminal and use the following command (replace
<inputFileName.xml> with your RAVEN input file):

python raven/framework/Driver.py <inputFileName.xml>

Alternatively, the raven framework script can be used. In this case, the command is:

raven_framework <inputFileName.xml>
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5 Raven Input Structure

The RAVEN code does not have a fixed calculation flow, since all of its basic objects can be
combined in order to create a user-defined calculation flow. Thus, its input (XML format) is
organized in different XML blocks, each with a different functionality. The main input blocks are
as follows:

• <Simulation>: The root node containing the entire input, all of the following blocks fit
inside the Simulation block.

• <RunInfo>: Specifies the calculation settings (number of parallel simulations, etc.).

• <Distributions>: Defines distributions needed for describing parameters, etc.

• <Samplers>: Sets up the strategies used for exploring an uncertain domain.

• <Functions>: Details interfaces to external user-defined functions and modules.

• <Models>: Specifies codes, ROMs, post-processing analysis, etc. the user will be building
and/or running.

• <Steps>: Combines other blocks to detail a step in the RAVEN workflow including I/O and
computations to be performed.

• <Data>: Specifies internal data objects used by RAVEN.

• <Databases>: Lists the HDF5 databases used as input/output to a RAVEN run.

• <OutStreamManager>: Visualization and Printing system block.

Each of these blocks are explained in dedicated sections in the following chapters.
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6 RunInfo

In the RunInfo block, the user specifies how the overall computation should be run. This block
accepts several input settings that define how to drive the calculation and set up, when needed,
particular settings for the machine the code needs to run on (e.g. queueing system, if not PBS,
etc.). In the following subsections, we explain all the keywords and how to use them in detail.

6.1 RunInfo: Input of Calculation Flow

This sub-section contains the information regarding the XML nodes used to define the settings of
the calculation flow that is being performed through RAVEN:

• <WorkingDir>, string, required field, specifies the absolute or relative (with respect to
the location where RAVEN is run from) path to a directory that will store all the results of
the calculations and where RAVEN looks for the files specified in the block <Files>.
Default: None

• <RelativeWorkingDir>, string, optional field, specifies the relative (with respect to
the location where the xml file is located) path to a directory that will store all the results of
the calculations and where RAVEN looks for the files specified in the block <Files>.
Default: None

• <Files>, comma separated string, required field, lists the paths to any files required by
the code.

• <batchSize>, integer, required field, specifies the number of parallel runs executed si-
multaneously (e.g., the number of driven code instances, e.g. RELAP5-3D, that RAVEN
will spawn at the same time).
Default: 1

• <Sequence>, comma separated string, required field, is an ordered list of the step names
that RAVEN will run (see Section 14).

• <JobName>, string, optional field, specifies the name to use for the job when submitting
to a pbs queue. Acceptable characters include alphanumerics as well as “-” and “ ”. If more
than 15 characters are provided, RAVEN will truncate it using a hyphen between the first 10
and last 4 character, i.e., “1234567890abcdefgh” will be truncated to “1234567890-efgh”.
Default: raven qsub

• <NumThreads>, integer, optional field, can be used to specify the number of threads
RAVEN should associate when running the driven software. For example, if RAVEN is
driving a code named “FOO,” and this code has multi-threading support, this block is used to
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specify how many threads each instance of FOO should use (e.g. “FOO --n-threads=N”
where N is the number of threads).
Default: 1 (or None when the driven code does not have multi-threading support)

• <NumMPI>, integer, optional field, can be used to specify the number of MPI CPUs RAVEN
should associate when running the driven software. For example, if RAVEN is driving a code
named “FOO,” and this code has MPI support, this block specifies how many MPI CPUs
each instance of FOO should use (e.g. “mpiexec FOO -np N” where N is the number of
CPUs).
In addition, this flag activates the parallel execution of internal Models (e.g. ROMs, Ex-
ternalModels, PostProcessors, etc.). If this node is not present, the internal Models are run
using a multi-threading approach (i.e. single processor, multiple threads equal to the batch-
size)
Default: 1 (or None when the driven code does not have MPI support)

• <totalNumCoresUsed>, integer, optional field, is the global number of CPUs RAVEN
is going to use for performing the calculation. When the driven code has MPI and/or
multi-threading support and the user specifies NumThreads > 1 and NumMPI > 1, then
totalNumCoresUsed is set according to the following formula:
totalNumCoresUsed = NumThreads ∗ NumMPI ∗ batchSize.
Default: 1

• <precommand>, string, optional field, specifies a command that needs to be inserted
before the actual command that is used to run the external model (e.g., mpiexec -n 8
precommand ./externalModel.exe (...)).
Default: None

• <postcommand>, string, optional field, specifies a command that needs to be appended
after the actual command that is used to run the external model (e.g., mpiexec -n 8
./externalModel.exe (...) postcommand).
Default: None

• <MaxLogFileSize>, integer, optional field. specifies the maximum size of the log file
in bytes. Every time RAVEN drives a code/software, it creates a logfile of the code’s screen
output.
Default: ∞
( Note: This flag is not implemtend yet.)

• <deleteOutExtension>, comma separated string, optional field, specifies, if a run
of an external model has not failed, which output files should be deleted by their extension
(e.g., <deleteOutExtension>txt,pdf</deleteOutExtension> will delete all
generated txt and pdf files).
Default: None
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• <delSucLogFiles>, boolean, optional field, when True and the run of an external model
has not failed (return code = 0), deletes the associated log files.
Default: False

6.2 RunInfo: Input of Queue Modes

In this sub-section, all of the keywords (XML nodes) for setting the queue system are reported.

• <mode>, string, optional field, can specify which kind of protocol the parallel enviroment
should use. RAVEN currently supports two pre-defined “modes”:

– pbsdsh: this “mode” uses the pbsdsh protocol to distribute the program running; more
information regarding this protocol can be found in [1]. Mode “pbsdsh” automatically
knows when it needs to generate a qsub command, by inquiring the machine enviro-
ment:

∗ If RAVEN is executed in the HEAD node of an HPC system, RAVEN generates a
qsub command, and instantiates and submits itself to the queue system.
∗ If the user decides to execute RAVEN from an “interactive node” (a certain number

of nodes that have been reserved in interactive PBS mode), RAVEN, using the
“pbsdsh” system, is going to utilize the reserved resources (CPUs and nodes) to
distribute the jobs, but will not generate a qsub command.

In addition, this flag activates the remote (PBS) execution of internal Models (e.g.
ROMs, ExternalModels, PostProcessors, etc.). If this node is not present, the inter-
nal Models are run using a multi-threading approach (i.e. master processor, multiple
parallel threads)

– mpi: this “mode” uses mpiexec to distribute the running program; more information
regarding this protocol can be found in [2]. Mode “MPI” can either generate a qsub
command or can execute on selected nodes. In order to make the “mpi” mode generate
a qsub command, an additional keyword (xml sub-node) needs to be specified:

∗ If RAVEN is executed in the HEAD node of an HPC system, the user needs to
input a sub-node, <runQSUB>, right after the specification of the mpi mode (i.e.
<mode>mpi<runQSUB/></mode>). If the keyword is provided, RAVEN gen-
erates a qsub command, instantiates itself, and submits itself to the queue system.
∗ If the user decides to execute RAVEN from an “interactive node” (a certain num-

ber of nodes that have been reserved in interactive PBS mode), RAVEN, using
the “mpi” system, is going to utilize the reserved resources (CPUs and nodes) to
distribute the jobs, but, will not generate a qsub command.

When the user decides to run in “mpi” mode without making RAVEN generate a qsub
command, different options are available:
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∗ If the user decides to run on the local machine (either in local desktop/workstation
or a remote machine), no additional keywords are needed (i.e.
<mode>mpi</mode>).
∗ If the user is running on multiple nodes, the node ids have to be specified:
· the node ids can be specified in an external text file (node ids separated by

blank space). This file needs to be provided in the XML node <mode>, intro-
ducing a sub-node named <nodefile> (e.g.
<mode>mpi<nodefile>/tmp/nodes</nodefile></mode>).
· the node ids can be contained in an enviromental variable (node ids separated

by blank space). This variable needs to be provided in the <mode> XML
node, introducing a sub-node named <nodefileenv> (e.g.
<mode>mpi<nodefileenv>NODEFILE</nodefileenv></mode>>).
· If none of the above options are used, RAVEN will attempt to find the nodes’

information in the enviroment variable PBS NODEFILE.

In addition, this flag activates the remote (PBS) execution of internal Models (e.g.
ROMs, ExternalModels, PostProcessors, etc.). If this node is not present, the inter-
nal Models are run using a multi-threading approach (i.e. master processor, multiple
parallel threads)

• <NumNode>, integer, optional field, specifies the number of nodes RAVEN should request
when running on High Performance Computing (HPC) systems.
Default: None

• <CustomMode>, xml node, optional field, is an xml node where “advanced” users can
implement newer “modes.” Please refer to sub-section 6.3 for advanced users.

• <queueingSoftware>, string, optional field. RAVEN has support for the PBS queueing
system. If the platform provides a different queueing system, the user can specify its name
here (e.g., PBS PROFESSIONAL, etc.).
Default: PBS PROFESSIONAL

• <expectedTime>, colum separated string, requested field (pbsdsh mode), specifies the
time the whole calculation is expected to last. The syntax of this node is hours:minutes:seconds
(e.g. 40:10:30 equals 40 hours, 10 minutes, 30 seconds). After this period of time, the
HPC system will automatically stop the simulation (even if the simulation is not completed).
It is preferable to rationally overestimate the needed time.
Default: None

6.3 RunInfo: Advanced Users

This sub-section addresses some customizations of the running environment that are possible in
RAVEN. Firstly, all the keywords reported in the previous sections can be pre-defined by the user in
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an auxiliary XML input file. Every time RAVEN gets instantiated (i.e. the code is run), it looks for
an optional file, named “default runinfo.XML” contained in the “\home\username\.raven\”
directory (i.e. “\home\username\.raven\default runinfo.XML”). This file (same syn-
tax as the RunInfo block defined in the general input file) will be used for defining default values
for the data in the RunInfo block. In addition to the keywords defined in the previous sections, in
the <RunInfo> node, an additional keyword can be defined:

• <DefaultInputFile>, string, optional field. In this block, the user can change the
default xml input file RAVEN is going to look for if none have been provided as a command-
line argument.
Default: “test.xml”.

As already mentioned, this file is read to define default data for the RunInfo block. This means
that all the keywords defined here will be overridden by any values specified in the actual RAVEN
input file.
In section 6.2, it is explained how RAVEN can handle the queue and parallel systems. If the
currently available “modes” are not suitable for the user’s system (workstation, HPC system, etc.),
it is possible to define a custom “mode” modifying the <RunInfo> block as follows:

<RunInfo>
...
<CustomMode file="newMode.py" class="NewMode">

aNewMode
</CustomMode>
<mode>aNewMode</mode>
...

</RunInfo>

The python file should define a class that inherits from Simulation.SimulationMode of
the RAVEN framework and overrides the necessary functions. Generally, modifySimulation
will be overridden to change the precommand or postcommand parts which will be added before
and after the executable command. An example Python class is given below with the functions
that can and should be overridden:

import Simulation
class NewMode(Simulation.SimulationMode):

def doOverrideRun(self):
# If doOverrideRun is true, then use runOverride instead of
# running the simulation normally.
# This method should call simulation.run somehow
return True

def runOverride(self):
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# this can completely override the Simulation’s run method
pass

def modifySimulation(self):
# modifySimulation is called after the runInfoDict has been
# setup and allows the mode to change any parameters that
# need changing. This typically modifies the precommand and
# the postcommand that are put before/after the command.
pass

def XMLread(self,XMLNode):
# XMLread is called with the mode node, and can be used to
# get extra parameters needed for the simulation mode.
pass

6.4 RunInfo: Examples

Here we present a few examples using different components of the RunInfo node:

<RunInfo>
<WorkingDir>externalModel</WorkingDir>
<Files>lorentzAttractor.py</Files>
<Sequence>MonteCarlo</Sequence>
<batchSize>100</batchSize>
<NumThreads>4</NumThreads>
<mode>mpi</mode>
<NumMPI>2</NumMPI>

</RunInfo>

This examples specifies the working directory (WorkingDir) where the necessary file (Files)
is located and to run a series of 100 (batchSize) Monte-Carlo calculations (Sequence).
MPI mode (mode) is used along with 4 threads (NumThreads) and 2 MPI processes per run
(NumMPI).
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7 Distributions

RAVEN provides support for several probability distributions. Currently, the user can choose
among all of the most important 1-dimensional distributions and N -dimensional ones, either cus-
tom or multidimensional normal.

The user will specify the probability distributions, that need to be used during the simulation,
within the <Distributions> XML block:

<Simulation>
...

<Distributions>
<!-- All the necessary distributions will be listed here -->

</Distributions>
...

</Simulation>

In the next two sub-sections, the input requirements for all of the distributions are reported.

7.1 1-Dimensional Probability Distributions

This sub-section is organized in two different parts: 1) continuous 1-D distributions and 2) dis-
crete 1-D distributions. These two paragraphs cover all the requirements for using the different
distribution entities.

7.1.1 1-Dimensional Continuous Distributions

In this paragraph all the 1-D distributions currently available in RAVEN are reported.

Firstly, all the probability distributions functions in the code can be truncated by using the
following keywords:

<lowerBound>aFloatValue</lowerBound>
<upperBound>aFloatValue</upperBound>

Obviously, each distribution already defines its valid domain (e.g. Normal distribution, [−∞,+∞]).
RAVEN currently provides support for 12 1-Dimensional distributions. In the following para-
graphs, all the input requirements are reported and commented.
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7.1.1.1 Beta Distribution

The Beta distribution is defined, by default, on the interval [0, 1] parameterized by two positive
shape parameters, denoted by α and β, that appear as exponents of the random variable. The
distribution domain can be changed, specifying new boundaries, to fit the user’s needs. Its support
is x ∈ (0, 1).

The specifications of this distribution must be defined within a <Beta> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <alpha>, float, required parameter, first shape parameter.

• <beta>, float, required parameter, second shape parameter.

• <low>, float, optional parameter, lower domain, boundary.
Default: 0.0

• <high>, float, optional parameter, upper domain, boundary.
Default: 1.0

Example:

<Distributions>
...
<Beta name=’aUserDefinedName’>

<low>aFloatValue</low>
<high>aFloatValue</high>
<alpha>aFloatValue</alpha>
<beta>aFloatValue</beta>

</Beta>
...

</Distributions>

7.1.1.2 Exponential Distribution

The Exponential distribution support is x ∈ [0,+∞).

The specifications of this distribution must be defined within an <Exponential> XML
block. This XML node accepts one attribute:
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• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

• <lambda>, float, required parameter, rate parameter.

Example:

<Distributions>
...
<Exponential name=’aUserDefinedName’>

<lambda>aFloatValue</lambda>
</Exponential>
...

</Distributions>

7.1.1.3 Gamma Distribution

The Gamma distribution is a two-parameter family of continuous probability distributions. The
common exponential distribution and χ-squared distribution are special cases of the gamma distri-
bution. Its support is x ∈ (0,+∞).

The specifications of this distribution must be defined within a <Gamma> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <alpha>, float, required parameter, shape parameter.

• <beta>, float, required parameter, 1/scale or the inverse scale parameter;

• <low>, float, optional parameter, lower domain boundary.
Default: 0.0

Example:
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<Distributions>
...
<Gamma name=’aUserDefinedName’>

<alpha>aFloatValue</alpha>
<beta>aFloatValue</beta>
<low>aFloatValue</low>

</Gamma>
...

</Distributions>

7.1.1.4 Logistic Distribution

The Logistic distribution is similar to the normal distribution with a CDF that is an instance of a
logistic function (Cdf(x) = 1

1+e−
(x−location)

scale
)
). It resembles the normal distribution in shape but has

heavier tails (higher kurtosis). Its support is x ∈ (−∞,+∞).

The specifications of this distribution must be defined within a <Logistic> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <location>, float, required parameter, the distribution mean.

• <scale>, float, required parameter, scale parameter that is proportional to the standard
deviation (σ2 = 1

3
π2scale2).

Example:

<Distributions>
...
<Logistic name=’aUserDefinedName’>

<location>aFloatValue</location>
<scale>aFloatValue</scale>

</Logistic>
...

</Distributions>
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7.1.1.5 LogNormal Distribution

The LogNormal distribution is a distribution with the logarithm of the random variable being
normally distributed. Its support is x ∈ (0,+∞).

The specifications of this distribution must be defined within a <LogNormal> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <mean>, float, required parameter, the distribution mean or expected value (in log-scale).

• <sigma>, float, required parameter, standard deviation.

Example:

<Distributions>
...
<LogNormal name=’aUserDefinedName’>

<mean>aFloatValue</mean>
<sigma>aFloatValue</sigma>

</LogNormal>
...

</Distributions>

7.1.1.6 Normal Distribution

The Normal distribution is an extremely useful continuous distribution. Its utility is due to the
central limit theorem, which states that, under mild conditions, the mean of many random variables
independently drawn from the same distribution is distributed approximately normally, irrespective
of the form of the original distribution. Its support is x ∈ (−∞,+∞).

The specifications of this distribution must be defined within a <Normal> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:
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• <mean>, float, required parameter, the distribution mean or expected value.

• <sigma>, float, required parameter, the standard deviation.

Example:

<Distributions>
...
<Normal name=’aUserDefinedName’>

<mean>aFloatValue</mean>
<sigma>aFloatValue</sigma>

</Normal>
...

</Distributions>

7.1.1.7 Triangular Distribution

The Triangular distribution is a continuous distribution that has a triangular shape for its PDF.
Like the uniform distribution, upper and lower limits are “known,” but a “best guess,” of the mode
or center point is also added. It has been recommended as a “proxy” for the beta distribution. Its
support is min ≤ x ≤ max.

The specifications of this distribution must be defined within a <Triangular> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <apex>, float, required parameter, peak location

• <min>, float, required parameter, domain lower boundary.

• <max>, float, required parameter, domain upper boundary.

Example:

<Distributions>
...
<Triangular name=’aUserDefinedName’>

<apex>aFloatValue</apex>

32



<min>aFloatValue</min>
<max>aFloatValue</max>

</Triangular>
...

</Distributions>

7.1.1.8 Uniform Distribution

The Uniform distribution is a continuous distribution with a rectangular-shaped PDF. It is often
used where the distribution is only vaguely known, but upper and lower limits are known. Its
support is lower ≤ x ≤ upper.

The specifications of this distribution must be defined within a <Uniform> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <low>, float, required parameter, domain lower boundary.

• <high>, float, required parameter, domain upper boundary.

Example:

<Distributions>
...
<Uniform name=’aUserDefinedName’>

<low>aFloatValue</low>
<high>aFloatValue</high>

</Uniform>
...

</Distributions>

7.1.1.9 Weibull Distribution

The Weibull distribution is a continuous distribution that is often used in the field of failure anal-
ysis; in particular, it can mimic distributions where the failure rate varies over time. If the failure
rate is:
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• constant over time, then k = 1, suggests that items are failing from random events;

• decreases over time, then k < 1, suggesting “infant mortality”;

• increases over time, then k > 1, suggesting “wear out” - more likely to fail as time goes by.
Its support is x ∈ [0,+∞).

The specifications of this distribution must be defined within a <Weibull> XML block. This
XML node accepts one attribute:
• name, required string attribute, user-defined name of this distribution. Note: As with other

objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <k>, float, required parameter, shape parameter.

• <lambda>, float, required parameter, scale parameter.

Example:

<Distributions>
...
<Weibull name=’aUserDefinedName’>

<lambda>aFloatValue</lambda>
<k>aFloatValue</k>

</Weibull>
...

</Distributions>

7.1.2 1-Dimensional Discrete Distributions.

RAVEN currently supports 3 discrete distributions. In the following paragraphs, the input require-
ments are reported.

7.1.2.1 Bernoulli Distribution

The Bernoulli distribution is a discrete distribution of the outcome of a single trial with only two
results, 0 (failure) or 1 (success), with a probability of success p. It is the simplest building block
on which other discrete distributions of sequences of independent Bernoulli trials can be based.
Basically, it is the binomial distribution (k = 1, p) with only one trial. Its support is k ∈ 0, 1.

The specifications of this distribution must be defined within a <Bernoulli> XML block.
This XML node accepts one attribute:
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• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

• <p>, float, required parameter, probability of success.

Example:

<Distributions>
...
<Bernoulli name=’aUserDefinedName’>

<p>aFloatValue</p>
</Bernoulli>
...

</Distributions>

7.1.2.2 Binomial Distribution

The Binomial distribution is the discrete probability distribution of the number of successes in a
sequence of n independent yes/no experiments, each of which yields success with probability p.
Its support is k ∈ 0, 1, 2, ..., n.

The specifications of this distribution must be defined within a <Binomial> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <p>, float, required parameter, probability of success.

• <n>, integer, required parameter, number of experiments.

Example:

<Distributions>
...
<Binomial name=’aUserDefinedName’>

<n>aFloatValue</n>
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<p>aFloatValue</p>
</Binomial>
...

</Distributions>

7.1.2.3 Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a
given number of events occurring in a fixed interval of time and/or space if these events occur
with a known average rate and independently of the time since the last event. Its support is k ∈
1, 2, 3, 4, ....

The specifications of this distribution must be defined within a <Poisson> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

• <mu>, float, required parameter, mean rate of events/time.

Example:

<Distributions>
...
<Poisson name=’aUserDefinedName’>

<mu>aFloatValue</mu>
</Poisson>
...

</Distributions>

7.2 N-Dimensional Probability Distributions

The group of N -Dimensional distributions allow the user to model stochastic dependences be-
tween parameters. Thus instead of using N distributions for N parameters, the user can define
a single distribution lying in a N -Dimensional space. The following N -Dimensional Probability
Distributions are available within RAVEN:
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• NDInverseWeight: ND Inverse Weight interpolation distribution (see Section 7.2.0.4)

• NDCartesianSpline: ND spline interpolation distribution (see Section 7.2.0.5)

For both distributions, the user provides the sampled values of either CDF or PDF of the distribu-
tion. The sampled values can be scattered distributed (for NDInverseWeight) or over a cartesian
grid (for NDCartesianSpline).

The user can initialize, for each N -Dimensional distribution, the parameters of the random
number generator function:

• initial grid disc

• tolerance

in the < dist init > block defined in sampler block < sampler init > (see Section 8).

7.2.0.4 NDInverseWeight Distribution

The specifications of this distribution must be defined within the xml block< NDInverseWeight >.
In RAVEN the NDInverseWeight distribution can be initialized through the following keywords:

• < p >, float, required parameter, power parameter. Greater values of p assign greater influ-
ence to values closest to the interpolated point.

• < data filenametype =′ ...′ >, string, name of the data file containing scattered values
(file type .txt). The type attribute indicate if the data in indicated file is PDF or CDF.

• < working dir >, string, folder location of the data file

----------------------------
Example:
----------------------------
<Distributions>

...
<NDInverseWeight name=’...’>

<p>...</p>
<data_filename type=’...’>...</data_filename>
<working_dir></working_dir>

</NDInverseWeight>
...

</Distributions>
----------------------------
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Each data entry contained in data filename is listed row by row and must be listed as follows:

• number of dimensions

• number of sampled points

• ND coordinate of each sampled point

• value of each sampled point

As an example, the following shows the data entries contained in data filename for a 3-dimensional
data set that contained two sampled CDF values: ([0.0,0.0,0.0], 0.1) and ([1.0, 1.0,0.0], 0.8)

----------------------------
Example: scattered data file
----------------------------
3
2
0.0
0.0
0.0
1.0
1.0
0.0
0.1
0.8
----------------------------

7.2.0.5 NDCartesianSpline Distribution

The specifications of this distribution must be defined within the xml block< NDCartesianSpline >.
In RAVEN NDCartesianSpline distribution can be initialized through the following keywords:

• < dataf ilenametype =′ ...′ >, string, name of the data file containing scattered values (file
type .txt). The type attribute indicate if the data in indicated file is PDF or CDF.

• < workingdir >, string, folder location of the data file

----------------------------
Example:
----------------------------

38



<Distributions>
...
<NDCartesianSpline name=’...’>

<data_filename type=’...’>...</data_filename>
<working_dir></working_dir>

</NDCartesianSpline>
...

</Distributions>
----------------------------

Each data entry contained in data filename is listed row by row and must be listed as follows:

• number of dimensions

• number of discretization for each dimension

• discretization values for each dimension

• value of each sampled point

As an example, the following shows the data entries contained in data filename for a 2-
dimensional CDF data set on the following grid (x, y):

• first dimension (x): -0.5, 0.5

• first dimension (y): 1.0 2.0 3.0

----------------------------
Example: scattered data file
----------------------------
2
2
3
-0.5
0.5
1.0
2.0
3.0
CDF value of (-0.5,1.0)
CDF value of (+0.5,1.0)
CDF value of (-0.5,2.0)
CDF value of (+0.5,2.0)

39



CDF value of (-0.5,3.0)
CDF value of (+0.5,3.0)
----------------------------
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8 Samplers

The sampler is probably the most important entity in the RAVEN framework. It performs the driv-
ing of the specific sampling strategy and, hence, determines the effectiveness of the analysis, from
both an accuracy and computational point of view. The samplers, that are available in RAVEN,
can be categorized into three main classes:

• Once-through (see Section 8.1)

• Dynamic Event Tree (DET) (see Section 8.2)

• Adaptive (see Section 8.3)

Before analyzing each sampler in detail, it is important to mention that each type has a similar syn-
tax to input the variables to be “sampled”. In the example below, the variable ’variableName’
is going to be sampled by the Sampler ’whatever’ using the distribution named
’aDistribution’.

<Simulation>
...
<Samplers>

...
<WhatEverSampler name=’whatever’>

...
<variable name=’variableName’>

...
<distribution>aDistribution</distribution>
...

</variable>
...

</WhatEverSampler>
...

</Samplers>
...

</Simulation>

As reported in section 15, the variable naming syntax, for external driven codes, depends on the
way the “code interface” has been implemented. For example, if the code has an input structure like
the one reported below (YAML), the variable name might be’I-Level|II-Level|variable’.
In this way, the relative code interface (and input parser) will know which variable needs to be per-
turbed and the “recipe” to access it. As reported in 15, its syntax is chosen by the developer of
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the “code interface” and is implemented in the interface only (no modifications are needed in the
RAVEN code).

Example YAML based Input:

[I-Level]
[./II-Level]

variable = xxx
[../]

[]

Example XML block to define the variables and associated distributions:

<variable name=’I-Level|II-Level|variable’>
<distribution>exampleDistribution</distribution>

</variable>

8.1 Once-through Samplers

The once-through sampler category collects all the strategies that perform the sampling of the
input space without exploiting, through dynamic learning approaches, the information made avail-
able from the outcomes of calculations previously performed (adaptive sampling) and the common
system evolution (patterns) that different sampled calculations can generate in the phase space (dy-
namic event tree). In the RAVEN framework, five different “once-through” samplers are available:

• Monte Carlo (MC)

• Stratified

• Grid Based

• Sparse Grid Collocation

• Response Surface Design of Experiment

• Factorial Design of Experiment

From a practical point of view, these sampling strategies represent different ways to explore
the input space. In the following paragraphs, the input requirements and a small explanation of the
different sampling methodologies are reported.
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8.1.1 Monte Carlo

The Monte-Carlo sampling approach is one of the most well-known and widely used approaches
to perform exploration of the input space. The main idea behind MonteCarlo sampling is to ran-
domly perturbate of the input space according to uniform or parameter-based probability density
functions.

The specifications of this sampler must be defined within a <MonteCarlo> XML block.
This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this Sampler. N.B. As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks (xml);

In the MonteCarlo input block, the user needs to specify the variables need to be sampled. As
already mentioned, these variables are inputted within consecutive xml blocks called< variable >:

• < sampler init >, xml node, required parameter. In this xml-node,the following xml-nodes
need to be specified:

– limit, required string attribute, number of MonteCarlo samples needs to be generated;

– initial seed, optional integer attribute, initial seeding of random number generator

– reseed at each iteration, optional boolean/string attribute (case insensitive), perform
a re-seeding for each sample generated (True values = True, yes, y, t). Default = False;

– dist init, optional xml node, in this node the user specifies the initialization of the
random number generator function for each N-Dimensional Probability Distributions
(see Section 7.2).

• < variable >, xml node, required parameter. This xml-node needs to contain the attribute:

– <variable>, XML node, required parameter will specify one attribute:

∗ name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child node:

∗ <distribution>, string, required field, name of the distribution that is associ-
ated to this variable. Its name needs to be contained in the <Distributions>
block explained in Section 7.

Example:

<Samplers>
...
<MonteCarlo name=’MCname’>

<sampler_init>
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<limit>10</limit>
<initial_seed>200286</initial_seed>
<reseed_at_each_iteration>false</reseed_at_each_iteration>
<dist_init>
<distribution name= ’ND_InverseWeight_P’>

<initial_grid_disc>10</initial_grid_disc>
<tolerance>0.2</tolerance>

</distribution>
</dist_init>

</sampler_init>
<variable name=’var1’>

<distribution>aDistributionNameDefinedInDistributionBlock
</distribution>

</variable>
</MonteCarlo>
...

</Samplers>

8.1.2 Grid

The Grid sampling approach is probably the simplest exploration approach that can be employed
to explore an uncertain domain. The idea is to construct anN -dimensional grid where each dimen-
sion is represented by one uncertain variable. This approach performs the sampling at each node
of the grid. The sampling of the grid consists in evaluating the answer of the system under all pos-
sible combinations among the different variables’ values with respect to a predefined discretization
metric. In RAVEN two discretization metrics are available: 1) cumulative distribution function,
and 2) value. Thus, the grid meshing can be input via probability or variable values. Regarding the
N-dimensional distributions, the user can specify for each dimension the type of grid to be used
(i.e., value or CDF). Note the discretization of the CDF, only for the grid sampler, is performed on
the marginal distribution for the specific variable considered.

The specifications of this sampler must be defined within a <Grid> XML block. This XML
node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Grid> input block, the user needs to specify the variables to sample. As already men-
tioned, these variables are specified within consecutive <variable> XML blocks:
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• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.

– <grid>, float or space separated floats, required field, the content of this XML node
depends on the definition of the associated attributes:

∗ type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.
∗ construction, required string attribute, how the grid needs to be constructed,

independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

∗ construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:
· steps, required integer attribute, number of equally spaced/probable dis-

cretization steps.
· upperBound, conditional float attribute, the upper limit of the grid. Note: This

attribute must be specified if the lowerBound has not been defined.
· lowerBound, conditional float attribute, the lower limit of the grid. Note: This

attribute must be specified if the upperBound has not been defined.
This construction type requires that the content of the <grid> node represents the
step size,stepSize in the expression below, (either in probability or value). The
attributes lowerBound and upperBound are mutually exclusive (only one of
them can be specified):
· If the upperBound is present, the grid lower bound will be at:
upperBound− steps ∗ stepSize
· If the lowerBound is present, the grid upper bound will be at:
lowerBound + steps ∗ stepSize

The lower and upper bounds are checked against the associated <distribution>
bounds. If one or both of them falls outside the distribution’s bounds, the code will
raise an error.
∗ construction=’custom’. The grid will be directly specified by the user. No

additional attributes are needed.
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This construction type requires that the <grid> node contains the actual mesh
bins. For example, if the grid type is ’CDF’, in the body of <grid>, the user
will specify the CDF probability thresholds (nodalization in probability).

Example:

<Samplers>
...
<Grid name=’Gridname’>

<variable name=’var1’>
<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>
<grid type=’value’ construction=’equal’ steps=’100’

lowerBound=’1.0’>0.2</grid>
</variable>
<variable name=’var2’>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type=’CDF’ construction=’equal’ steps=’5’

lowerBound=’0.0’>0.2</grid>
</variable>
<variable name=’var3’>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type=’value’ construction=’equal’ steps=’100’

upperBound=’21.0’>0.2</grid>
</variable>
<variable name=’var4’>

<distribution>aDistributionNameDefinedInDistributionBlock4
</distribution>
<grid type=’CDF’ construction=’equal’ steps=’5’

upperBound=’1.0’>0.2</grid>
</variable>
<variable name=’var5’>

<distribution>aDistributionNameDefinedInDistributionBlock5
</distribution>
<grid type=’value’ construction=’custom’>0.2 0.5

10.0</grid>
</variable>
<variable name=’var6’>

<distribution>aDistributionNameDefinedInDistributionBlock6
</distribution>
<grid type=’CDF’ construction=’custom’>0.2 0.5 1.0</grid>
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</variable>
</Grid>
...

</Samplers>

8.1.3 Sparse Grid Collocation

Sparse Grid Collocation builds on generic Grid sampling by selecting evaluation points based
on characteristic quadratures as part of stochastic collocation for generalized polynomial chaos
uncertainty quantification. In collocation you construct an N-dimensional grid, with each uncertain
variable providing an axis. Along each axis, the points of evaluation correspond to quadrature
points necessary to integrate polynomials (see 12.3.2). In the simplest (and most naive) case,
a N-Dimensional tensor product of all possible combinations of points from each dimension’s
quadrature is constructed as sampling points. The number of necessary samples can be reduced by
employing Smolyak-like sparse grid algorithms, which use reduced combinations of polynomial
orders to reduce the necessary sampling space. The specifications of this sampler must be defined
within a <SparseGridCollocation> XML block. .

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• parallel, optional string attribute, option to disable parallel construction of the sparse
grid. Because of increasing computational expense with increasing input space dimension,
RAVEN will default to parallel construction of the sparse grid.
Default: True

In the <SparseGridCollocation> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

In the variable node, the following xml-node needs to be specified:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.
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Because of the tight coupling between the Sampler and the ROM in stochastic collocation for gen-
eralized polynomial chaos, the Sampler needs access to the ROM via the assembler do determine
the polynomials, quadratures, and importance weights to use in each dimension (see 12.3.2).

• Assembler Objects These objects are either required or optional depending on the func-
tionality of the SparseGridCollocation Sampler. The objects must be listed with a rigorous
syntax that, except for the XML node tag, is common among all the objects. Each of these
nodes must contain 2 attributes that are used to map them within the simulation framework:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The SparseGridCollocation Sampler approach requires the following object types:

– <ROM>, , string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 12.3).

Example:
---------------------------------------------------------
<Samplers>

...
<SparseGridCollocation name="mySG" parallel="0">

<variable name="x1">
<distribution>myDist1</distribution>

</variable>
<variable name="x2">
<distribution>myDist2</distribution>

</variable>
<ROM class = ’Models’ type = ’ROM’ >SCROM</ROM>

</SparseGridCollocation>
...

</Samplers>
---------------------------------------------------------

8.1.4 Stratified

The Stratified sampling approach is a method for the exploration of the input space that consists of
dividing the uncertain domain into subgroups before sampling. In the “stratified” sampling, these
subgroups must be:

• mutually exclusive: every element in the population must be assigned to only one stratum
(subgroup);
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• collectively exhaustive: no population element can be excluded.

Then simple random sampling or systematic sampling is applied within each stratum. It is
worthwhile to note that the well-known Latin hypercube sampling represents a specialized version
of the stratified approach, when the domain strata are constructed in equally-probable CDF bins.

The specifications of this sampler must be defined within a <Stratified> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Stratified> input block, the user needs to specify the variables to sample. As already
mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.

– <grid>, float or space separated floats, required field, the content of this XML node
depends on the definition of the associated attributes:

∗ type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.
∗ construction, required string attribute, how the grid needs to be constructed,

independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

∗ construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:
· steps, required integer attribute, number of equally spaced/probable dis-

cretization steps.
· upperBound, conditional float attribute, the upper limit of the grid. Note: This

attribute must be specified if the lowerBound has not been defined.
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· lowerBound, conditional float attribute, the lower limit of the grid. Note: This
attribute must be specified if the upperBound has not been defined.

This construction type requires that the content of the <grid> node represents the
step size,stepSize in the expression below, (either in probability or value). The
attributes lowerBound and upperBound are mutually exclusive (only one of
them can be specified):
· If the upperBound is present, the grid lower bound will be at:
upperBound− steps ∗ stepSize
· If the lowerBound is present, the grid upper bound will be at:
lowerBound + steps ∗ stepSize

The lower and upper bounds are checked against the associated <distribution>
bounds. If one or both of them falls outside the distribution’s bounds, the code will
raise an error.
∗ construction=’custom’. The grid will be directly specified by the user. No

additional attributes are needed.
This construction type requires that the <grid> node contains the actual mesh
bins. For example, if the grid type is ’CDF’, in the body of <grid>, the user
will specify the CDF probability thresholds (nodalization in probability).

As one can see, the input specifications for the Stratified sampler are similar to that of the Grid
sampler. It is important to mention again that for each zone (grid mesh) only a point, randomly
selected, is picked and not all the nodal combinations (like in the Grid sampling).

Example:

<Samplers>
...
<Stratified name=’StratifiedName’>

<variable name=’var1’>
<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>
<grid type=’CDF’ construction=’equal’ steps=’5’

lowerBound=’0.0’>0.2</grid>
</variable>
<variable name=’var2’>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type=’value’ construction=’equal’ steps=’100’

upperBound=’21.0’>0.2</grid>
</variable>
<variable name=’var3’>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
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<grid type=’CDF’ construction=’custom’>0.2 0.5 1.0</grid>
</variable>

</Stratified>
...

</Samplers>

For N-dimensional (ND) distributions, when the sampling is performed on a grid on a CDF the
user it is required to specify the same CDF grid for all the dimensions of the ND distribution. This
is possible by defining a global grid and associate such global grid to each variable belonging to
the ND distribution as follows.

<Samplers>
...
<LHS name=’StratifiedName’>

<variable name=’x0’>
<distribution

dim=’1’>ND_InverseWeight_P</distribution>
<grid type=’global_grid’>name_grid1</grid>

</variable>
<variable name=’y0,z0’>

<distribution
dim=’2’>ND_InverseWeight_P</distribution>

<grid type=’global_grid’>name_grid1</grid>
</variable>
<global_grid>

<grid name=’name_grid1’ construction=’custom’>0.1
1.0 0.2</grid>

</global_grid>
</LHS>
...

</Samplers>

8.1.5 Response Surface Design

The Response Surface Design, or Response Surface Modeling (RSM), approach is one of the most
common Design of Experiment (DOE) methodologies currently in use. It explores the relationships
between several explanatory variables and one or more response variables. The main idea of RSM
is to use a sequence of designed experiments to obtain an optimal response. RAVEN currently
employs two different algorithms that can be classified within this family of methods:

• Box-Behnken: This methodology aims to achieve the following goals:
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– Each factor, or independent variable, is placed at one of three equally spaced values,
usually coded as -1, 0, +1. (At least three levels are needed for the following goal);

– The design should be sufficient to fit a quadratic model, that is, one squared term per
factor and the products of any two factors;

– The ratio of the number of experimental points to the number of coefficients in the
quadratic model should be reasonable (in fact, their designs keep it in the range of 1.5
to 2.6);

– The estimation variance should more or less depend only on the distance from the
center (this is achieved exactly for the designs with 4 and 7 factors), and should not
vary too much inside the smallest (hyper)cube containing the experimental points.

Each design can be thought of as a combination of a two-level (full or fractional) factorial
design with an incomplete block design. In each block, a certain number of factors are
put through all combinations for the factorial design, while the other factors are kept at the
central values.

• Central Composite: This design consists of three distinct sets of experimental runs:

– A factorial (perhaps fractional) design in the factors are studied, each having two levels;

– A set of center points, experimental runs whose values of each factor are the medians
of the values used in the factorial portion. This point is often replicated in order to
improve the precision of the experiment;

– A set of axial points, experimental runs identical to the centre points except for one
factor, which will take on values both below and above the median of the two factorial
levels, and typically both outside their range. All factors are varied in this way.

This methodology is useful for building a second order (quadratic) model for the response
variable without needing to use a complete three-level factorial experiment.

All the parameters, needed for setting up the algorithms reported above, must be defined within a
<ResponseSurfaceDesign> block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <ResponseSurfaceDesign> input block, the user needs to specify the variables
to sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter will specify one attribute:
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– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.

– <boundaries>, XML node, required field, within this block the boundaries for this
variable are defined. This XML node needs to contain the attribute:

∗ type, required string attribute, how the boundaries are defined. This attribute
can be:
· ’CDF’: the boundaries are going to be provided as probability CDF thresholds
· ’value’: the boundaries are going to be provided as variable values.

Within the <boundaries> block, the following sub-nodes need to be provided:

∗ <lower>, float, required field, the lower limit of this variable.
∗ <upper>, float, required field, the upper limit of this variable.

The main XML block <ResponseSurfaceDesign> needs to contain an additional sub-node
called <ResponseSurfaceDesignSettings>. In this sub-node, the user needs to specify
different settings depending on the algorithm being used:

• <algorithm type>, string, required field, this XML node will contain the name of the
algorithm to be used. Based on the chosen algorithm, other nodes need to be defined:

– <algorithm type>BoxBehnken<algorithm type/>. If Box-Behnken is spec-
ified, the following additional node is recognized:

∗ <ncenters>, integer, optional field, the number of center points to include in
the box. If this parameter is not specified, then a pre-determined number of points
are automatically included.
Default: Automatic Generation.

Note: In order to employ the “Box-Behnken” design, at least 3 variables must be used.

– <algorithm type>CentralComposite<algorithm type/>. If Central Com-
posite is specified, the following additional nodes will be recognized:

∗ <centers>, comma separated integers, optional field, the number of center
points to be included. This block needs to contain 2 integers values separated by
a comma. The first entry represents the number of centers to be added for the
factorial block; the second one is the one for the star block.
Default: 4,4.
∗ <alpha>, string, optional field, in this node, the user decides how an α factor

needs to be determined. Two options are available:
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· orthogonal, for orthogonal design.
· rotatable, for rotatable design.

Default: orthogonal.
∗ <face>, string, optional field, in this node, the user defines how faces should be

constructed. Three options are available:
· circumscribed, for circumscribed facing
· inscribed, for inscribed facing
· faced, for faced facing.

Default: circumscribed.

Note: In order to employ the “Central Composite” design, at least 2 variables must be used.

Example:

<Samplers>
...

<ResponseSurfaceDesign name=’BoxBehnkenRespDesign’>
<ResponseSurfaceDesignSettings>

<algorithm_type>BoxBehnken</algorithm_type>
<ncenters>1</ncenters>

</ResponseSurfaceDesignSettings>
<variable name=’var1’ >

<distribution >Gauss1</distribution>
<boundaries type="CDF">

<lower>0.0</lower>
<upper>1.0</upper>

</boundaries>
</variable>
<!-- N.B. at least 3 variables need to inputted

in order to employ this algorithm
-->

</ResponseSurfaceDesign>
<ResponseSurfaceDesign name=’CentralCompositeRespDesign’>

<ResponseSurfaceDesignSettings>
<algorithm_type>CentralComposite</algorithm_type>
<centers>1, 2</centers>
<alpha>orthogonal</alpha>
<face>circumscribed</face>

</ResponseSurfaceDesignSettings>
<variable name=’var4’ >

54



<distribution >Gauss1</distribution>
<boundaries type="CDF">

<lower>aFloatValue</lower>
<upper>aFloatValue</upper>

</boundaries>
</variable>
<!-- N.B. at least 2 variables need to inputted

in order to employ this algorithm
-->

</ResponseSurfaceDesign>
...

</Samplers>

8.1.6 Factorial Design

The Factorial Design method is an important method to determine the effects of multiple vari-
ables on a response. A factorial design can reduce the number of samples one has to perform by
studying multiple factors simultaneously. Additionally, it can be used to find both main effects
(from each independent factor) and interaction effects (when both factors must be used to explain
the outcome). A factorial design tests all possible conditions. Because factorial designs can lead to
a large number of trials, which can become expensive and time-consuming, they are best used for
small numbers of variables with only a few domain discretizations (1 to 3). Factorial designs work
well when interactions between variables are strong and important and where every variable con-
tributes significantly. RAVEN currently employs three different algorithms that can be classified
within this family of techniques:

• General Full Factorial explores the input space by investigating all possible combinations
of a set of factors (variables).

• 2-Level Fractional-Factorial consists of a carefully chosen subset (fraction) of the exper-
imental runs of a full factorial design. The subset is chosen so as to exploit the sparsity-
of-effects principle exposing information about the most important features of the problem
studied, while using a fraction of the effort of a full factorial design in terms of experimental
runs and resources.

• Plackett-Burman identifies the most important factors early in the experimentation phase
when complete knowledge about the system is usually unavailable. It is an efficient screening
method for identifying the active factors (variables) using as few samples as possible. In
Plackett-Burman designs, main effects have a complicated confounding relationship with
two-factor interactions. Therefore, these designs should be used to study main effects when
it can be assumed that two-way interactions are negligible.
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All the parameters needed for setting up the algorithms reported above must be defined within a
<FactorialDesign> block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <FactorialDesign> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.

– <grid>, float or space separated floats, required field, the content of this XML node
depends on the definition of the associated attributes:

∗ type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.
∗ construction, required string attribute, how the grid needs to be constructed,

independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

∗ construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:
· steps, required integer attribute, number of equally spaced/probable dis-

cretization steps.
· upperBound, conditional float attribute, the upper limit of the grid. Note: This

attribute must be specified if the lowerBound has not been defined.
· lowerBound, conditional float attribute, the lower limit of the grid. Note: This

attribute must be specified if the upperBound has not been defined.
This construction type requires that the content of the <grid> node represents the
step size,stepSize in the expression below, (either in probability or value). The
attributes lowerBound and upperBound are mutually exclusive (only one of
them can be specified):
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· If the upperBound is present, the grid lower bound will be at:
upperBound− steps ∗ stepSize
· If the lowerBound is present, the grid upper bound will be at:
lowerBound + steps ∗ stepSize

The lower and upper bounds are checked against the associated <distribution>
bounds. If one or both of them falls outside the distribution’s bounds, the code will
raise an error.
∗ construction=’custom’. The grid will be directly specified by the user. No

additional attributes are needed.
This construction type requires that the <grid> node contains the actual mesh
bins. For example, if the grid type is ’CDF’, in the body of <grid>, the user
will specify the CDF probability thresholds (nodalization in probability).

The main <FactorialDesign> block needs to contain an additional sub-node called
<FactorialSettings>. In this sub-node, the user needs to specify different settings depend-
ing on the algorithm being used:

• <algorithm type>, string, required field, specifies the algorithm to be used. Based on
the chosen algorithm, other nodes may be defined:

– <algorithm type>full<algorithm type/>. Full factorial design. If full
is specified, no additional nodes are necessary.
Note: The full factorial design does not have any limitations on the number of dis-

cretization bins that can be used in the <grid> XML node for each <variable>
specified.

– <algorithm type>2levelFract<algorithm type/>. Two-level Fractional-
Factorial design. If
2levelFract is specified, the following additional nodes must be specified:

∗ <gen>, space separated strings, required field, specifies the confounding map-
ping. For instance, in this block the user defines the decisions on a fraction of the
full-factorial by allowing some of the factor main effects to be compounded with
other factor interaction effects. This is done by defining an alias structure that de-
fines, symbolically, these interactions. These alias structures are written like “C =
AB” or “I = ABC”, or “AB = CD”, etc. These define how a column is related to
the others.
∗ <genMap>, space separated strings, required field, defines the mapping be-

tween the <gen> symbolic aliases and the variables that have been inputted in
the <FactorialDesign> main block.

Note: The Two-levels Fractional-Factorial design is limited to 2 discretization bins in
the <grid> node for each <variable>.
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– <algorithm type>pb<algorithm type/>. Plackett-Burman design. If pb is
specified, no additional nodes are necessary.
Note: The Plackett-Burman design does not have any limitations on the number of

discretization bins allowed in the <grid> node for each <variable>.

Example:

<Samplers>
...
<FactorialDesign name=’fullFactorial’>

<FactorialSettings>
<algorithm_type>full</algorithm_type>

</FactorialSettings>
<variable name=’var1’ >

<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>
<grid type=’value’ construction=’custom’ >0.02 0.03

0.5</grid>
</variable>
<variable name=’var2’ >

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type=’CDF’ construction=’custom’>0.5 0.7 1.0</grid>

</variable>
</FactorialDesign>
<FactorialDesign name=’2levelFractFactorial’>

<FactorialSettings>
<algorithm_type>2levelFract</algorithm_type>
<gen>a,b,ab</gen>
<genMap>var1,var2,var3</genMap>

</FactorialSettings>
<variable name=’var1’ >

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type=’value’ construction=’custom’ >0.02 0.5</grid>

</variable>
<variable name=’var2’ >

<distribution>aDistributionNameDefinedInDistributionBlock
</distribution>
<grid type=’CDF’ construction=’custom’>0.5 1.0</grid>

</variable>
<variable name=’var3’>

<distribution>aDistributionNameDefinedInDistributionBlock5
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</distribution>
<grid type=’value’ upperBound=’4’ construction=’equal’

steps=’1’>0.5</grid>
</variable>

</FactorialDesign>
<FactorialDesign name=’pbFactorial’>

<FactorialSettings>
<algorithm_type>pb</algorithm_type>

</FactorialSettings>
<variable name=’var1’ >

<distribution>aDistributionNameDefinedInDistributionBlock6
</distribution>
<grid type=’value’ construction=’custom’ >0.02 0.5</grid>

</variable>
<variable name=’VarGauss2’ >

<distribution>aDistributionNameDefinedInDistributionBlock7
</distribution>
<grid type=’CDF’ construction=’custom’>0.5 1.0</grid>

</variable>
</FactorialDesign>
...

</Samplers>

8.2 Dynamic Event Tree (DET) Samplers

The Dynamic Event Tree methodologies are designed to take the timing of events explicitly into
account, which can become very important especially when uncertainties in complex phenomena
are considered. Hence, the main idea of this methodology is to let a system code determine the
pathway of an accident scenario within a probabilistic environment. In this family of methods, a
continuous monitoring of the system evolution in the phase space is needed. In order to use the
DET-based methods, the generic driven code needs to have, at least, an internal trigger system and,
consequently, a “restart” capability. In the RAVEN framework, three different DET samplers are
available:

• Dynamic Event Tree (DET)

• Hybrid Dynamic Event Tree (HDET)

• Adaptive Dynamic Event Tree (ADET)
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The ADET methodology represents a hybrid between the DET and adaptive sampling ap-
proaches. For this reason, its input requirements are reported in the Adaptive Samplers’ section
(8.3).

8.2.1 Dynamic Event Tree

The Dynamic Event Tree sampling approach is a sampling strategy that is designed to take the
timing of events, in transient/accident scenarios, explicitly into account. From an application point
of view, an N -Dimensional grid is built on the CDF space. A single simulation is spawned and a
set of triggers is added to the system code control logic. Every time a trigger is activated (one of
the CDF thresholds in the grid is exceeded), a new set of simulations (branches) is spawned. Each
branch carries its conditional probability. In the RAVEN code, the triggers are defined by specify-
ing a grid using a predefined discretization metric in the mode input space. RAVEN provides two
discretization metrics: 1) CDF, and 2) value. Thus, the trigger thresholds can be entered either in
probability or value space.

The specifications of this sampler must be defined within a <DynamicEventTree> XML
block. This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• print end XML, optional string/boolean attribute, controls the dumping of a “summary”
of the DET performed into an external XML.
Default: False.

• maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

In the <DynamicEventTree> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.
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– <grid>, float or space separated floats, required field, the content of this XML node
depends on the definition of the associated attributes:

∗ type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.
∗ construction, required string attribute, how the grid needs to be constructed,

independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

∗ construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:
· steps, required integer attribute, number of equally spaced/probable dis-

cretization steps.
· upperBound, conditional float attribute, the upper limit of the grid. Note: This

attribute must be specified if the lowerBound has not been defined.
· lowerBound, conditional float attribute, the lower limit of the grid. Note: This

attribute must be specified if the upperBound has not been defined.
This construction type requires that the content of the <grid> node represents the
step size,stepSize in the expression below, (either in probability or value). The
attributes lowerBound and upperBound are mutually exclusive (only one of
them can be specified):
· If the upperBound is present, the grid lower bound will be at:
upperBound− steps ∗ stepSize
· If the lowerBound is present, the grid upper bound will be at:
lowerBound + steps ∗ stepSize

The lower and upper bounds are checked against the associated <distribution>
bounds. If one or both of them falls outside the distribution’s bounds, the code will
raise an error.
∗ construction=’custom’. The grid will be directly specified by the user. No

additional attributes are needed.
This construction type requires that the <grid> node contains the actual mesh
bins. For example, if the grid type is ’CDF’, in the body of <grid>, the user
will specify the CDF probability thresholds (nodalization in probability).

Example:

<Samplers>
...
<DynamicEventTree name=’DETname’>

<variable name=’var1’>
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<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>

<grid type=’value’ construction=’equal’ steps=’100’
lowerBound=’1.0’>0.2</grid>

</variable>
<variable name=’var2’>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>

<grid type=’CDF’ construction=’equal’ steps=’5’
lowerBound=’0.0’>0.2</grid>

</variable>
<variable name=’var3’>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>

<grid type=’value’ construction=’equal’ steps=’100’
upperBound=’21.0’>0.2</grid>

</variable>
<variable name=’var4’>

<distribution>aDistributionNameDefinedInDistributionBlock4
</distribution>

<grid type=’CDF’ construction=’equal’ steps=’5’
upperBound=’1.0’>0.2</grid>

</variable>
<variable name=’var5’>

<distribution>aDistributionNameDefinedInDistributionBlock5
</distribution>

<grid type=’value’ construction=’custom’>0.2 0.5
10.0</grid>

</variable>
<variable name=’var6’>

<distribution>aDistributionNameDefinedInDistributionBlock6
</distribution>

<grid type=’CDF’ construction=’custom’>0.2 0.5 1.0</grid>
</variable>

</DynamicEventTree>
...

</Samplers>
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8.2.2 Hybrid Dynamic Event Tree

The Hybrid Dynamic Event Tree sampling approach is a sampling strategy that represents an evo-
lution of the Dynamic Event Tree method for the simultaneous exploration of the epistemic and
aleatory uncertain space. In similar approaches, the uncertainties are generally treated by employ-
ing a Monte-Carlo sampling approach (epistemic) and DET methodology (aleatory). The HDET
methodology, developed within the RAVEN code, can reproduce the capabilities employed by this
approach, but provides additional sampling strategies to the user. The epistemic or epistemic-like
uncertainties can be sampled through the following strategies:

• Monte-Carlo;

• Grid sampling;

• Stratified (e.g., Latin Hyper Cube).

From a practical point of view, the user defines the parameters that need to be sampled by
one or more different approaches. The HDET module samples those parameters creating an N -
dimensional grid characterized by all the possible combinations of the input space coordinates
coming from the different sampling strategies. Each coordinate in the input space represents a
separate and parallel standard DET exploration of the uncertain domain. The HDET methodology
allows the user to explore the uncertain domain employing the best approach for each variable
kind. The addition of a grid sampling strategy among the usable approaches allows the user to
perform a discrete parametric study under aleatory and epistemic uncertainties.

Regarding the input requirements, the HDET sampler is a “sub-type” of the
<DynamicEventTree> sampler. For this reason, its specifications must be defined within a
<DynamicEventTree> block. This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• print end XML, optional string/boolean attribute, controls the dumping of a “summary”
of the DET performed into an external XML.
Default: False.

• maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

In the <DynamicEventTree> input block, the user needs to specify the variables to sam-
ple. As already mentioned, these variables are specified within consecutive <variable> XML
blocks:
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• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.

– <grid>, float or space separated floats, required field, the content of this XML node
depends on the definition of the associated attributes:

∗ type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.
∗ construction, required string attribute, how the grid needs to be constructed,

independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

∗ construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:
· steps, required integer attribute, number of equally spaced/probable dis-

cretization steps.
· upperBound, conditional float attribute, the upper limit of the grid. Note: This

attribute must be specified if the lowerBound has not been defined.
· lowerBound, conditional float attribute, the lower limit of the grid. Note: This

attribute must be specified if the upperBound has not been defined.
This construction type requires that the content of the <grid> node represents the
step size,stepSize in the expression below, (either in probability or value). The
attributes lowerBound and upperBound are mutually exclusive (only one of
them can be specified):
· If the upperBound is present, the grid lower bound will be at:
upperBound− steps ∗ stepSize
· If the lowerBound is present, the grid upper bound will be at:
lowerBound + steps ∗ stepSize

The lower and upper bounds are checked against the associated <distribution>
bounds. If one or both of them falls outside the distribution’s bounds, the code will
raise an error.
∗ construction=’custom’. The grid will be directly specified by the user. No

additional attributes are needed.
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This construction type requires that the <grid> node contains the actual mesh
bins. For example, if the grid type is ’CDF’, in the body of <grid>, the user
will specify the CDF probability thresholds (nodalization in probability).

In order to activate the Hybrid Dynamic Event Tree sampler, the main <DynamicEventTree>
block needs to contain, at least, an additional sub-node called <HybridSamplerSettings>.
As already mentioned, the user can combine the Monte-Carlo, Stratified, and Grid approaches in
order to create a “pre-sampling”N -dimensional grid, from whose nodes a standard DET method is
employed. For this reason, the user can specify a maximum of three <HybridSamplerSettings>
sub-nodes (i.e. one for each of the available once-through samplers). This sub-node needs to con-
tain the following attribute:

• type, required string attribute, type of pre-sampling strategy to be used. Available options
are ’MonteCarlo’, ’Grid’, and ’Stratified’.

Independent of the type of “pre-sampler” that has been specified, the <HybridSamplerSettings>
must contain the variables need to be sampled. As already mentioned, these variables are specified
within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child node:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.

If a pre-sampling strategy type is either ’Grid’ or ’Stratified’, within the <variable>
blocks, the user needs to specify the sub-node <grid>. As with the standard DET, the content of
this XML node depends on the definition of the associated attributes:

• type, required string attribute, user-defined discretization metric type:

– ’CDF’, the grid is going to be specified based on the cumulative distribution function
probability thresholds

– ’value’, the grid is going to be provided using variable values.

• construction, required string attribute, how the grid needs to be constructed, indepen-
dent of its type (i.e. ’CDF’ or ’value’).
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Based on the construction type, the content of the <grid> XML node and the requirements
for other attributes change:

• construction=’equal’. The grid is going to be constructed equally-spaced (type=’value’)
or equally probable (type=’CDF’). This construction type requires the definition of addi-
tional attributes:

– steps, required integer attribute, number of equally spaced/probable discretization
steps.

– upperBound, conditional float attribute, the upper limit of the grid. Note: This
attribute must be specified if the lowerBound has not been defined.

– lowerBound, conditional float attribute, the lower limit of the grid. Note: This
attribute must be specified if the upperBound has not been defined.

This construction type requires that the content of the <grid> node represents the step
size,stepSize in the expression below, (either in probability or value). The attributes lowerBound
and upperBound are mutually exclusive (only one of them can be specified):

– If the upperBound is present, the grid lower bound will be at:
upperBound− steps ∗ stepSize

– If the lowerBound is present, the grid upper bound will be at:
lowerBound + steps ∗ stepSize

The lower and upper bounds are checked against the associated <distribution> bounds.
If one or both of them falls outside the distribution’s bounds, the code will raise an error.

• construction=’custom’. The grid will be directly specified by the user. No addi-
tional attributes are needed.

This construction type requires that the <grid> node contains the actual mesh bins. For
example, if the grid type is ’CDF’, in the body of <grid>, the user will specify the CDF
probability thresholds (nodalization in probability).

Example:

<Samplers>
...
<DynamicEventTree name=’HybridDETname’ print_end_XML="True">

<HybridSamplerSettings type=’MonteCarlo’ limit=’2’>
<variable name=’var1’ >
<distribution>aDistributionNameDefinedInDistributionBlock1

</distribution>
</variable>
<variable name=’var2’ >
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<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>

<grid type=’CDF’ construction=’equal’ steps=’1’
lowerBound=’0.1’>0.1</grid>

</variable>
</HybridSamplerSettings>
<HybridSamplerSettings type=’Grid’>

<!-- Point sampler way (directly sampling the variable) -->
<variable name=’var3’ >
<distribution>aDistributionNameDefinedInDistributionBlock3

</distribution>
<grid type=’CDF’ construction=’equal’ steps=’1’

lowerBound=’0.1’>0.1</grid>
</variable>
<variable name=’var4’ >
<distribution>aDistributionNameDefinedInDistributionBlock4

</distribution>
<grid type=’CDF’ construction=’equal’ steps=’1’

lowerBound=’0.1’>0.1</grid>
</variable>

</HybridSamplerSettings>
<HybridSamplerSettings type=’Stratified’>

<!-- Point sampler way (directly sampling the variable )
-->

<variable name=’var5’ >
<distribution>aDistributionNameDefinedInDistributionBlock5

</distribution>
<grid type=’CDF’ construction=’equal’ steps=’1’

lowerBound=’0.1’>0.1</grid>
</variable>
<variable name=’var6’ >
<distribution>aDistributionNameDefinedInDistributionBlock6

</distribution>
<grid type=’CDF’ construction=’equal’ steps=’1’

lowerBound=’0.1’>0.1</grid>
</variable>

</HybridSamplerSettings>
<!-- DYNAMIC EVENT TREE INPUT (it goes outside an inner

block like HybridSamplerSettings) -->
<Distribution name=’dist7’>
<distribution>aDistributionNameDefinedInDistributionBlock7

</distribution>
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<grid type=’CDF’ construction=’custom’>0.1 0.8</grid>
</Distribution>

</DynamicEventTree>
...

</Samplers>

8.3 Adaptive Samplers

The Adaptive Samplers’ family provides the possibility to perform smart sampling (also known as
adaptive sampling) as an alternative to classical “once-through” techniques. The motivation is that
system simulations are often computationally expensive, time-consuming, and high dimensional
with respect to the number of input parameters. Thus, exploring the space of all possible simulation
outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk
analysis, it is important to discover the relationship between a potentially large number of input
parameters and the output of a simulation using as few simulation trials as possible.

The description above characterizes a typical context for performing adaptive sampling where
a few observations are obtained from the simulation, a reduced order model (ROM) is built to
represent the simulation space, and new samples are selected based on the model constructed.
The reduced order model (see section 12.3) is then updated based on the simulation results of
the sampled points. In this way, an attempt is made to gain the most information possible with a
small number of carefully selected sample points, limiting the number of expensive trials needed
to understand features of the system space.

Currently, RAVEN provides support for two adaptive algorithms:

• Adaptive Sampler for Limit Surface Search

• Adaptive Dynamic Event Tree

In the following paragraphs, the input requirements and a small explanation of the different
sampling methods are reported.

8.3.1 Adaptive Sampler

The Adaptive Sampler approach is an advanced methodology that employs a smart sampling
around transition zones that determine a change in the status of the system (limit surface). To
perform such sampling, RAVEN uses ROMs for predicting, in the input space, the location(s) of
these transitions, in order to accelerate the exploration of the input space in proximity of the limit
surface.
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The specifications of this sampler must be defined within an <Adaptive> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Adaptive> input block, the user needs to specify the variables to sample. As already
mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child node:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.

In addition to the <variable> nodes, the main XML node <Adaptive> needs to contain
two supplementary sub-nodes:

• <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the definition of other attributes that might be defined in this XML node:

– limit, optional integer attribute, the maximum number of adaptive samples.
Default: infinite.

– forceIteration, optional boolean attribute, this attribute controls if at least a
number of iterations equal to limit must be performed.
Default: False.

– weight, optional string attribute (case insensitive), defines on what the convergence
check needs to be performed.

∗ ’CDF’, the convergence is checked in terms of probability (Cumulative Distribu-
tion Function).
∗ ’value’, the convergence is checked on the hyper-volume in terms of variable

values.

Default: CDF.
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– persistence, optional integer attribute, offers an additional convergence check.
It represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.
Default: 0.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

• Assembler Objects These objects are either required or optional depending on the function-
ality of the Adaptive Sampler. The objects must be listed with a rigorous syntax that, except
for the XML node tag, is common among all the objects. Each of these nodes must contain
2 attributes that are used to identify them within the simulation framework:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The Adaptive Sampler approach requires or optionally accepts the following object types:

– <ROM>, , string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 12.3).

– <Function>, string, required field, the body of this XML block needs to contain
the name of an external function object defined within the <Functions> main block
(see Section 13). This object represents the boolean function that defines the transition
boundaries. This function must implement a method called residuumSign(self),
that returns either -1 or 1, depending on the system conditions (see Section 13.

– <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must
contain the name of a data object defined in the <Datas> block (see Section 9). The
adaptive sampling accepts “Datas” of type “TimePoint” and “TimePointSet” only.

Example:

<Samplers>
...
<Adaptive name=’AdaptiveName’>

<ROM class=’Models’ type=’ROM’>ROMname</ROM>
<Function class=’Functions’ type=’External’

>FunctionName</Function>
<TargetEvaluation class=’Datas’

type=’TimePointSet’>DataName</TargetEvaluation>
<Convergence limit=’3000’ forceIteration=’False’

weight=’none’ persistence=’5’>
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1e-2
</Convergence>
<variable name=’var1’>

<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>

</variable>
<variable name=’var2’>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>

</variable>
<variable name=’var3’>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>

</variable>
</Adaptive>
...

</Samplers>

Associated External Python Module:

def __residuumSign(self):
if self.whatEverValue < self.OtherValue :

return 1
else:

return -1

8.3.2 Adaptive Dynamic Event Tree

The Adaptive Dynamic Event Tree approach is an advanced methodology employing a smart
sampling around transition zones that determine a change in the status of the system (limit surface),
using the support of a Dynamic Event Tree methodology. The main idea of the application of the
previously explained adaptive sampling approach to the DET comes from the observation that the
DET, when evaluated from a limit surface perspective, is intrinsically adaptive. For this reason, it
appears natural to use the DET approach to perform a goal-function oriented pre-sampling of the
input space.

RAVEN uses ROMs for predicting, in the input space, the location(s) of these transitions, in
order to accelerate the exploration of the input space in proximity of the limit surface.

The specifications of this sampler must be defined within an <AdaptiveDynamicEventTree>
XML block. This XML node accepts one attribute:
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• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• print end XML, optional string/boolean attribute, this attribute controls the dumping of
a “summary” of the DET performed in to an external XML.
Default: False.

• maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

• mode, optional string attribute, controls when the adaptive search needs to begin. Two
options are available:

– ’post’, if this option is activated, the sampler first performs a standard Dynamic
Event Tree analysis. At end of it, it uses the outcomes to start the adaptive search in
conjunction with the DET support.

– ’online’, if this option is activated, the adaptive search starts at the beginning, dur-
ing the initial standard Dynamic Event Tree analysis. Whenever a transition is detected,
the Adaptive Dynamic Event Tree starts its goal-oriented search using the DET as
support;

Default: post.

• updateGrid, optional boolean attribute, if true, each adaptive request is going to update
the meshing of the initial DET grid.
Default: True.

In the <AdaptiveDynamicEventTree> input block, the user needs to specify the variables
to sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter will specify one attribute:

– name, required string attribute, user-defined name of this variable.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 7.

– <grid>, float or space separated floats, required field, the content of this XML node
depends on the definition of the associated attributes:
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∗ type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.
∗ construction, required string attribute, how the grid needs to be constructed,

independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

∗ construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:
· steps, required integer attribute, number of equally spaced/probable dis-

cretization steps.
· upperBound, conditional float attribute, the upper limit of the grid. Note: This

attribute must be specified if the lowerBound has not been defined.
· lowerBound, conditional float attribute, the lower limit of the grid. Note: This

attribute must be specified if the upperBound has not been defined.
This construction type requires that the content of the <grid> node represents the
step size,stepSize in the expression below, (either in probability or value). The
attributes lowerBound and upperBound are mutually exclusive (only one of
them can be specified):
· If the upperBound is present, the grid lower bound will be at:
upperBound− steps ∗ stepSize
· If the lowerBound is present, the grid upper bound will be at:
lowerBound + steps ∗ stepSize

The lower and upper bounds are checked against the associated <distribution>
bounds. If one or both of them falls outside the distribution’s bounds, the code will
raise an error.
∗ construction=’custom’. The grid will be directly specified by the user. No

additional attributes are needed.
This construction type requires that the <grid> node contains the actual mesh
bins. For example, if the grid type is ’CDF’, in the body of <grid>, the user
will specify the CDF probability thresholds (nodalization in probability).

In addition to the <variable> nodes, the main <AdaptiveDynamicEventTree> node
needs to contain two supplementary sub-nodes:

• <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the definition of other attributes that might be defined in this XML node:

– limit, optional integer attribute, the maximum number of adaptive samples.
Default: infinite.
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– forceIteration, optional boolean attribute, this attribute controls if at least a
number of iterations equal to limit must be performed.
Default: False.

– weight, optional string attribute (case insensitive), defines on what the convergence
check needs to be performed.

∗ ’CDF’, the convergence is checked in terms of probability (Cumulative Distribu-
tion Function).
∗ ’value’, the convergence is checked on the hyper-volume in terms of variable

values.

Default: CDF.

– persistence, optional integer attribute, offers an additional convergence check.
It represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.
Default: 0.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

• Assembler Objects These objects are either required or optional depending on the function-
ality of the Adaptive Sampler. The objects must be listed with a rigorous syntax that, except
for the XML node tag, is common among all the objects. Each of these nodes must contain
2 attributes that are used to identify them within the simulation framework:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The Adaptive Sampler approach requires or optionally accepts the following object types:

– <ROM>, , string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 12.3).

– <Function>, string, required field, the body of this XML block needs to contain
the name of an external function object defined within the <Functions> main block
(see Section 13). This object represents the boolean function that defines the transition
boundaries. This function must implement a method called residuumSign(self),
that returns either -1 or 1, depending on the system conditions (see Section 13.

– <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must
contain the name of a data object defined in the <Datas> block (see Section 9). The
adaptive sampling accepts “Datas” of type “TimePoint” and “TimePointSet” only.
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Example:

<Samplers>
...
<AdaptiveDynamicEventTree name = ’AdaptiveName’>

<ROM class = ’Models’ type = ’ROM’ROMname</ROM>
<Function class = ’Functions’ type =

’External’>FunctionName</Function>
<TargetEvaluation class = ’Datas’ type =

’TimePointSet’>DataName</TargetEvaluation>
<Convergence limit = ’3000’ subGridTol= ’0.001’

forceIteration = ’False’ weight = ’none’ persistence =
’5’>
1e-2

</Convergence>
<variable name = ’var1’>

<distribution>
aDistributionNameDefinedInDistributionBlock1

</distribution>
<grid type=’CDF’ construction=’custom’>0.1 0.8</grid>

</variable>
<variable name = ’var2’>

<distribution>
aDistributionNameDefinedInDistributionBlock2

</distribution>
<grid type=’CDF’ construction=’custom’>0.1 0.8</grid>

</variable>
<variable name = ’var3’>

<distribution>
aDistributionNameDefinedInDistributionBlock3

</distribution>
<grid type=’CDF’ construction=’custom’>0.1 0.8</grid>

</variable>
</AdaptiveDynamicEventTree>
...

</Samplers>

Associated External Python Module:

def __residuumSign(self):
if self.whatEverValue < self.OtherValue:

return 1
else:

return -1
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9 Datas

As seen in the previous chapters, different entities in the RAVEN code interact with each other
in order to create, ideally, an infinite number of different calculation flows. These interactions are
made possible through a data handling system that each entity understands. This system, neglecting
the grammar imprecision, is called the “Datas” system.

The <Datas> tag is a container of data objects of various types that can be constructed during
the execution of a particular calculation flow. These data objects can be used as input or output
for a particular Model (see Roles’ meaning in section 12), etc. Currently, RAVEN supports 4
different data types, each with a particular conceptual meaning. These data types are instantiated
as sub-nodes in the <Datas> block of an input file:

• <TimePoint>, as the name suggests, describes the state of the system at a certain point
in time. In other words, it can be considered a mapping between a set of parameters in the
input space and the resulting outcomes in the output space at a particular time.

• <TimePointSet> is a collection of individual TimePoint objects. It can be considered
a mapping between multiple sets of parameters in the input space and the resulting sets of
outcomes in the output space at a particular point in time.

• <History> describes the temporal evolution of the state of the system within a certain
input domain.

• <Histories> is a collection of individual History objects. It can be considered a mapping
between multiple sets of parameters in the input space and the resulting sets of temporal
evolutions in the output space.

As noted above, each data object represents a mapping between a set of parameters and the
resulting outcomes. The data objects are defined within the main XML block called <Datas>:

<Simulation>
...

<Datas>
<TimePoint name=’***’>...</TimePoint>
<TimePointSet name=’***’>...</TimePointSet>
<History name=’***’>...</History>
<Histories name=’***’>...</Histories>

</Datas>
...

</Simulation>

Independent of the type of data, the respective XML node has the following available attributes:
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• name, required string attribute, is a user-defined identifier for this data object. Note: As
with other objects, this name can be used to refer to this specific entity from other input
blocks in the XML.

• inputTs, optional integer attribute, used to specify at which “time step” the input space
needs to be retrieved. Note: If the user wants to take conditions from the end of the simula-
tion, s/he can directly input “-1.”
Default: 0

• operator, optional string attribute, is aimed at performing simple operations on the data
to be stored. The 3 options currently available are:

– ’max’

– ’min’

– ’average’

Default: None

• hierarchical, optional boolean attribute, if True this data object will be constructed, if
possible, in a hierarchical fashion.
Default: False

In each XML node (e.g. <TimePoint> or <Histories>), the user needs to specify the fol-
lowing sub-nodes:

• <Input>, comma separated string, required field lists the input parameters to which this
data is connected. Note: In the case when the “Data” type is either a TimePoint or a History,
this XML node must contain the attribute history, where the name of the associated
history needs to be placed.

• <Output>, comma separated string, required field lists the output parameters to which
this data is connected.

<Datas>
<TimePoint name=’TP’ inputTs=’-1’ operator=’max’

hierarchical=’False’>
<Input history=’a_history_name’>var1,var2,var3</Input>
<Output>result1,result2</Output>

</TimePoint>
<TimePointSet name=’TPS’>

<Input>var1,var2,var3</Input>
<Output>result1,result2</Output>

</TimePointSet>
<History name=’HIST’>
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<Input history=’a_history_name’>var1,var2,var3</Input>
<Output>result1,result2</Output>

</History>
<Histories name=’HISTs’>

<Input>var1,var2,var3</Input>
<Output>result1,result2</Output>

</Histories>
</Datas>
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10 Databases

The RAVEN framework provides the capability to store and retrieve data to/from an external
database. Currently RAVEN has support for only a database type called HDF5. This database,
depending on the data format it is receiving, will organize itself in a “parallel” or “hierarchical”
fashion. The user can create as many database objects as needed. The DataBase objects are defined
within the main XML block called <DataBases>:

<Simulation>
...
<DataBases>

...
<HDF5 name="aDataBaseName1"/>
<HDF5 name="aDataBaseName2"/>
...

</DataBases>
...

</Simulation>

The specifications of each DataBase of type HDF5 needs to be defined within the XML block
<HDF5>, that recognizes the following attributes:

• name, required string attribute, a user-defined identifier of this object. Note: As with other
objects, this is name can be used to reference this specific entity from other input blocks in
the XML.

• directory, optional string attribute, this attribute can be used to specify a particular
directory path where the database will be created, if no filename is specified, or where to find
an already existing one if filename is provided.
Default: raven/framework/DataBaseStorage

• filename, optional string attribute, specifies the filename of an HDF5 that already exists
in the directory. This is the only way to let RAVEN know that an HDF5 should be
opened and not overwritten. Note: When this attribute is not specified, the newer database
filename will be named name.h5, where name corresponds to the name attribute of this
object.
Default: None

• compression, optional string attribute, compression algorithm to be used. Available are:

– ’gzip’, best where portability is required. Good compression, moderate speed.

– ’lzf’, Low to moderate compression, very fast.

Default: None
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<DataBases>
<HDF5 name="aDataBaseName1" directory=’’path_to_a_dir’’

compression=’’lzf’’/>
<HDF5 name="aDataBaseName2" filename=’’aDataBaseName2.h5’’/>

</DataBases>

81



11 OutStream system

The PRA and UQ framework provides the capabilities to visualize and dump out the data that
are generated, imported (from a system code) and post-processed during the analysis. These ca-
pabilities are contained in the “OutStream” system. Actually, two different OutStream types are
available:

• Print, module that lets the user dump the data contained in the internal objects;

• Plot, module, based on MatPlotLib [3], aimed to provide advanced plotting capabilities.

Both the types listed above only accept as “input” a Data object type. This choice is due to the
“Datas” system (see section 9) having the main advantage of ensuring a standardized approach for
exchanging the data/meta-data among the different framework entities. Every module can project
its outcomes into a Data object. This provides the user with the capability to visualize/dump all the
modules’ results. As already mentioned, the RAVEN framework input is based on the Extensible
Markup Language (XML) format. Thus, in order to activate the “OutStream” system, the input
needs to contain a block identified by the <OutStreamManager> tag (as shown below).

<OutStreamManager>
<!-- "OutStream" objects that need to be created-->

</OutStreamManager>

In the “OutStreamManager” block an unlimited number of “Plot” and “Print” sub-blocks can
be specified. The input specifications and the main capabilities for both types are reported in the
following sections.

11.1 Printing system

The Printing system has been created in order to let the user dump the data, contained in the internal
data objects (see Section 9), out at anytime during the calculation. Currently, the only available
output is a Comma Separated Value (CSV) file. This will facilitate the exchanging of results and
provide the possibility to dump the solution of an analysis and “restart” another one constructing a
Data from scratch. The XML code, that is reported below, shows different ways to request a Print
OutStream. The user needs to provide a name for each sub-block (XML attribute). These names
are then used in the Step blocks to activate the Printing keywords at any time. As shown in the
examples below, every <Print> block must contain, at least, the two required tags:

• <type>, the output file type (csv or xml). Note: Only csv is currently available

• <source>, the Data name (one of the Data defined in the <Datas> block.

If only these two tags are provided (as in the “first-example” below), the output file will be filled
with the whole content of the “d-name” Data object.
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<OutStreamManager>
<Print name=’first-example’>

<type>csv</type>
<source>d-name</source>

</Print>
<Print name=’second-example’>

<type>csv</type>
<source>d-name</source>
<variables>Output</variables>

</Print>
<Print name=’third-example’>

<type>csv</type>
<source>d-name</source>
<variables>Input</variables>

</Print>
<Print name=’fourth-example’>

<type>csv</type>
<source>d-name</source>
<variables>Input|var-name-in,Output|var-name-out</variables>

</Print>
</OutStreamManager>

If just part of the <source> is important for a particular analysis, the additional XML tag
<variables> can be provided. In this block, the variables that need to be dumped must be
specified, in comma separated format. The available options, for the <variables> sub-block,
are listed below:

• Output, the output space will be dumped out (see “second-example”)

• Input, the input space will be dumped out (see “third-example”)

• Input—var-name-in/Output—var-name-out, only the particular variables “var-name-in”
and “var-name-out” will be reported in the output file (see “fourth-example”)

Note all of the XML tags are case-sensitive but not their content.

11.2 Plotting system

The Plotting system provides all the capabilities to visualize the analysis outcomes, in real-time or
as a post-processing stage. The system is based on the Python library MatPlotLib [3]. MatPlotLib
is a 2D/3D plotting library which produces publication quality figures in a variety of hardcopy
formats and interactive environments across platforms. This external tool has been wrapped in
the RAVEN framework, and is available to the user. Since it was unfeasible to support, in the
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source code, all the interfaces for all the available plot types, the RAVEN Plotting system directly
provide a formatted input structure for 11 different plot types (2D/3D). The user may request a
plot not present among the supported ones, since the RAVEN Plotting system has the capability to
construct on the fly the interface for a Plot, based on XML instructions.

11.2.1 Plot input structure

In order to create a plot, the user needs to add, within the <OutStreamManager> block, a
<Plot> sub-block. As for the <Print> OutStream, the user needs to specify a name as an
attribute of the plot. This name will then be used to request the plot in the <Steps> block. In
addition, the Plot block accepts the following attributes:

• dim, required integer attribute, defines the dimensionality of the plot: 2 (2D) or 3 (3D).

• interactive, optional bool attribute, specifies if the Plot needs to be interactively cre-
ated (real-time screen visualization).
Default: False

• overwrite, optional bool attribute, used when the plot needs to be dumped into picture
file/s. This attribute determines whether the code needs to overwrite the image files every
time a new plot (with the same name) is requested.
Default: False

As shown, in the XML input example below, the body of the Plot XML input contains two
main sub-nodes:

• <actions>, where general control options for the figure layout are defined (see Sec-
tion 11.2.1.1).

• <plot settings>, where the actual plot options are provided.

These two main sub-block are discussed in the following paragraphs.

11.2.1.1 “Actions” input block

The input in the <actions> sub-node is common to all the Plot types, since, in it, the user
specifies all the controls that need to be applied to the figure style. This block must be unique in
the definition of the <Plot> main block. In the following list, all the predefined “actions” are
reported:

• <how>, comma separated list of output types:

– screen, show the figure on the screen in interactive mode

– pdf, save the figure as a Portable Document Format file (PDF)

– png, save the figure as a Portable Network Graphics file (PNG)
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– eps, save the figure as an Encapsulated Postscript file (EPS)

– pgf, save the figure as a LaTeX PGF Figure file (PGF)

– ps, save the figure as a Postscript file (PS)

– gif, save the figure as a Graphics Interchange Format (GIF)

– svg, save the figure as a Scalable Vector Graphics file (SVG)

– jpeg, save the figure as a jpeg file (JPEG)

– raw, save the figure as a Raw RGBA bitmap file (RAW)

– bmp, save the figure as a Windows bitmap file (BMP)

– tiff, save the figure as a Tagged Image Format file (TIFF)

– svgz, save the figure as a Scalable Vector Graphics file (SVGZ)

• <title>, as the name suggests, within this block the user can specify the title of the figure.
In the body of this node, a few other tags are available:

– <text>, string type, title of the figure

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.title” method in [3].

• <label format>, within this block the default scale formatting can be modified. In the
body, a few other tags are available:

– <axis>, string, the axis where to apply the defined format, ‘x,’ ‘y,’ or ‘both’.
Default: ‘both’ Note: If this action will be used in a 3-D plot, the user can input ‘z’ as
well and ‘both’ will apply this format to all three axis.

– <style>, string, the style of the number notation, ‘sci’ or ‘scientific’ for scientific,
‘plain’ for plain notation.
Default: scientific

– <scilimits>, tuple, (m, n), pair of integers, if style is ‘sci’, scientific notation will
be used for numbers outside the range 10m to 10n. Use (0,0) to include all numbers.
Note: The value for this keyword, needs to be specified between brackets [for example,
(5,6)].
Default: (0,0)
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– <useOffset>, bool or double, if True, the offset will be calculated as needed; if
False, no offset will be used; if a numeric offset is specified, it will be used.
Default: False

• <figure properties>, within this block the user specifies how to customize the figure
style/quality. Thus, through this “action” the user has got full control on the quality of the
figure, its dimensions, etc. This control is performed by the following keywords:

– <figsize>, tuple (optional), (width, hight), in inches.

– <dpi>, integer, dots per inch.

– <facecolor>, string, set the figure background color (please refer to “matplotlib.figure.Figure”
in [3] for a list of all the colors available).

– <edgecolor>, string, the figure edge background color (please refer to “matplotlib.figure.Figure”
in [3] for a list of all the colors available).

– <linewidth>, float, the width of lines drawn on the plot.

– <frameon>, bool, if False, suppress drawing the figure frame.

• <range>, the range “action” specifies the ranges of all the axis. All the keywords in the
body of this block are optional:

– <ymin>, double (optional), lower boundary for the y axis.

– <ymax>, double (optional), upper boundary for the y axis.

– <xmin>, double (optional), lower boundary for the x axis.

– <xmax>, double (optional), upper boundary for the x axis.

– <zmin>, double (optional), lower boundary for the z axis. Note: This keyword is
effective in 3-D plots only.

– <zmax>, double (optional), upper boundary for the z axis. Note: This keyword is
effective in 3-D plots only.

• <camera>, the camera item is available in 3-D plots only. Through this “action,” it is
possible to orientate the plot as one wishes. The controls are:

– <elevation>, double (optional), stores the elevation angle in the z plane.

– <azimuth>, double (optional), stores the azimuth angle in the x,y plane.

• <scale>, the scale block allows the specification of the axis scales:

– <xscale>, string (optional), scale of the x axis. Three options are available: “lin-
ear,”“log,” or “symlog.”
Default: linear
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– <yscale>, string (optional), scale of the y axis. Three options are available: “linear,”
“log,” or “symlog.”
Default: linear

– <zscale>, string (optional), scale of the z axis. Three options are available: “linear,”
“log,” or “symlog.”
Default: linear Note: This keyword is effective in 3-D plots only.

• <add text>, same as title.

• <autoscale>, is a convenience method for simple axis view autoscaling. It turns au-
toscaling on or off, and then, if autoscaling for either axis is on, it performs the autoscaling
on the specified axis or axes. The following sub-nodes may be specified:

– <enable>, bool (optional), True turns autoscaling on, False turns it off. None leaves
the autoscaling state unchanged.
Default: True

– <axis>, string (optional), determines which axis to apply the defined format, ‘x,’ ‘y,’
or ‘both.’
Default: ‘both’ Note: If this action is used in a 3-D plot, the user can input ‘z’ as well
and ‘both’ will apply this format to all three axis.

– <tight>, bool (optional), if True, sets the view limits to the data limits; if False, let
the locator and margins expand the view limits; if None, use tight scaling if the only
output is an image file, otherwise treat tight as False.

• <horizontal line>, this “action” provides the ability to draw a horizontal line in the
current figure. This capability might be useful, for example, if the user wants to highlight a
trigger function of a variable. The following sub-nodes may be specified:

– <y>, double (optional), sets the y-value for the line.
Default: 0

– <xmin>, double (optional), is the starting coordinate on the x axis.
Default: 0

– <xmax>, double (optional), is the ending coordinate on the x axis.
Default: 1

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
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<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.axhline” method in [3].

Note: This capability is not available for 3-D plots.

• <vertical line>, similar to the “horizontal line” action, this block provides the ability
to draw a vertical line in the current figure. This capability might be useful, for example, if
the user wants to highlight a trigger function of a variable. The following sub-nodes may be
specified:

– <x>, double (optional), sets the x coordinate of the line.
Default: 0

– <ymin>, double (optional), starting coordinate on the y axis.
Default: 0

– <ymax>, double (optional), ending coordinate on the y axis.
Default: 1

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.axvline” method in [3].

Note: This capability is not available for 3-D plots.

• <horizontal rectangle>, this “action” provides the ability to draw, in the current
figure, a horizontally orientated rectangle. This capability might be useful, for example, if
the user wants to highlight a zone in the plot. The following sub-nodes may be specified:

– <ymin>, double (required), starting coordinate on the y axis.

– <ymax>, double (required), ending coordinate on the y axis.

– <xmin>, double (optional), starting coordinate on the x axis.
Default: 0

– <xmax>, double (optional), ending coordinate on the x axis. Default = 1

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

88



<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.axhspan” method in [3].

Note: This capability is not available for 3D plots.

• <vertical rectangle>, this “action” provides the possibility to draw, in the current
figure, a vertically orientated rectangle. This capability might be useful, for example, if the
user wants to highlight a zone in the plot. The following sub-nodes may be specified:

– <xmin>, double (required), starting coordinate on the x axis.

– <xmax>, double (required), ending coordinate on the x axis.

– <ymin>, double (optional), starting coordinate on the y axis.
Default: 0

– <ymax>, double (optional), ending coordinate on the y axis.
Default: 1

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.axvspan” method in [3].

Note: This capability is not available for 3D plots.

• <axes box>, this keyword controls the axes’ box. Its value can be ‘on’ or ‘off’.

• <axis properties>, this block is used to set axis properties. There are no fixed key-
words. If only a single property needs to be set, it can be specified as the body of this block,
otherwise a dictionary-like string needs to be provided. For reference regarding the available
keys, refer to “matplotlib.pyplot.axis” method in [3].

• <grid>, this block is used to define a grid that needs to be added in the plot. The following
keywords can be inputted:
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– <b>, double (required), starting coordinate on the x axis.

– <which>, double (required), ending coordinate on the x axis.

– <axis>, double (optional), starting coordinate on the y axis.
Default: 0

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.).

11.2.1.2 “plot settings” input block

The sub-block identified by the keyword <plot settings> is used to define the plot character-
istics. Within this sub-section at least a <plot> block must be present. the <plot> sub-section
may not be unique within the <plot settings> definition; the number of <plot> sub-blocks
is equal to the number of plots that need to be placed in the same figure. For example, in the
following XML cut, a “line” and a “scatter” type are combined in the same figure.

<OutStreamManager>
<Plot name=’example2PlotsCombined’ dim=’2’>

<actions>
<!-- Actions -->

</actions>
<plot\_settings>

<plot>
<type>line</type>
<x>d-type|Output|x1</x>
<y>d-type|Output|y1</y>

</plot>
<plot>
<type>scatter</type>
<x>d-type|Output|x2</x>
<y>d-type|Output|y2</y>

</plot>
<xlabel>label X</xlabel>
<ylabel>label Y</ylabel>

</plot\_settings>
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</Plot>
</OutStreamManager>

As already mentioned, within the <plot settings> block, at least a <plot> sub-block needs
to be specified. Independent of the plot type, some keywords are mandatory:

• <type>, string, required parameter, the plot type (for example, line, scatter, wireframe,
etc.).

• <x>, string, required parameter, this parameter needs to be considered as the x coordinate.

• <y>, string, required parameter, this parameter needs to be considered as the y coordinate.

• <z>, string required parameter (3D plots only), this parameter needs to be considered as
the z coordinate.

In addition, other plot-dependent keywords, reported in Section 11.2.1.3, can be provided.

Under the <plot settings> block other keywords, common to all of the plots the user
decided to combine in the figure, can be specified, such as:

• <xlabel>, string, optional parameter, the x axis label.

• <ylabel>, string, optional parameter, the y axis label.

• <zlabel>, string, optional parameter (3D plots only), the z axis label.

• <colorMap>, string, this parameter will be used to define a color map.

As already mentioned, the Plot system accepts as input for the visual parameters (i.e., x, y, z,
colorMap), data only from a Datas object. Considering the structure of “Datas,” the parameters
are inputted as follows: DataObjectName|Input(or)Output|variableName.

If the “variableName” contains the symbol |, it must be surrounded by brackets: [DataObjectName|Input(or)Output|(whatever|variableName)].

11.2.1.3 Predefined Plotting System: 2D/3D

As already mentioned above, the Plotting system provides a specialized input structure for several
different kind of plots specified in the <type> node:

• 2 Dimensional plots:
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– scatter creates a scatter plot of x vs y, where x and y are sequences of numbers of
the same length.

– line creates a line plot of x vs y, where x and y are sequences of numbers of the same
length.

– histogram computes and draws the histogram of x. Note: This plot accepts only
the XML node <x> even if it is considered as a 2D plot type.

– stem plots vertical lines at each x location from the baseline to y, and places a marker
there.

– step creates a 2 dimensional step plot.

– pseudocolor creates a pseudocolor plot of a two dimensional array. The two di-
mensional array is built creating a mesh from <x> and <y> data, in conjunction with
the data specified in the <colorMap> node.

– contour builds a contour plot creating a plot from <x> and <y> data, in conjunction
with the data specified in the <colorMap> node.

– filledContour creates a filled contour plot from <x> and <y> data, in conjunction
with the data specified in the <colorMap> node.

• 3 Dimensional plots:

– scatter creates a scatter plot of (x,y) vs z, where x, y, z are sequences of numbers
of the same length.

– line creates a line plot of (x,y) vs z, where x, y, z are sequences of numbers of the
same length.

– stem creates a 3 Dimensional stem plot of (x,y) vs z.

– surface creates a surface plot of (x,y) vs z. By default it will be colored in shades of
a solid color, but it also supports color mapping.

– wireframe creates a 3D wire-frame plot. No color mapping is supported.

– tri-surface creates a 3D tri-surface plot. It is a surface plot with automatic trian-
gulation.

– contour3D builds a 3D contour plot creating the plot from <x>, <y> and <z> data,
in conjunction with the data specified in <colorMap>.

– filledContour3D builds a filled 3D contour plot creating the plot from <x>, <y>
and <z> data, in conjunction with the data specified in <colorMap>.

– histogram computes and draws the histogram of x and y. Note: This plot accepts
only the XML nodes <x> and <y> even if it is considered as 3D plot type since the
frequency is mapped to the third dimension.
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As already mentioned, the settings for each plot type are specified within the XML block called
<plot>. The sub-nodes that are available depends on the plot type as each plot type has its own
set of parameters that can be specified.

In the following sub-sections all the options for the plot types listed above are reported.

11.2.2 2D & 3D Scatter plot

In order to create a “scatter” plot, either 2D or 3D, the user needs to write in the <type> body
the keyword “scatter.” In order to customize the plot, the user can define the following XML sub
nodes:

• <s>, integer, optional field, represents the size in points2̂. The “points” have the same
meaning of the font size (e.g. Times New Roman, pts 10). In here the user specifies the area
of the marker size.
Default: 20

• <c>, string, optional field, specifies the color or sequence of color to use. <c> can be
a single color format string, a sequence of color specifications of length N, or a sequence
of N numbers to be mapped to colors using the cmap and norm specified via <kwargs>.
Note: <c> should not be a single numeric RGB or RGBA sequence because that is indis-

tinguishable from an array of values to be colormapped. <c> can be a 2D array in which
the rows are RGB or RGBA. Note: <colorMap> will overwrite <c>. If <colorMap> is
defined then the color set used can be defined by <cmap>. If no <cmap> is given then the
default color set of “matplotlib.pyplot.scatter” method in [3] is used. If <colorMap> is not
defined then the plot is in solid color (default blue) as defined with <color> in <kwargs>.

• <marker>, string, optional field, specifies the type of marker to use.
Default: o

• <alpha>, string, optional field, sets the alpha blending value, between 0 (transparent) and
1 (opaque).
Default: None

• <linewidths>, string, optional field, widths of lines used in the plot. Note that this is a
tuple, and if you set the linewidths argument you must set it as a sequence of floats.
Default: None;

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
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</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2>[56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.scatter” method in [3].

11.2.3 2D & 3D Line plot

In order to create a “line” plot, either 2D or 3D, the user needs to write in the <type> body the
keyword “line.” In order to customize the plot, the user can define the following XML sub nodes:

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <interpPointsY>, integer, optional field, sets the number of points need to be used for
interpolation of the y axis. (only 3D line plot). Note: If <colorMap> is used then a
scatter plot will be plotted.

11.2.4 2D & 3D Histogram plot

In order to create a “histogram” plot, either 2D or 3D, the user needs to write in the <type> body
the keyword “histogram.” In order to customize the plot, the user can define the following XML
sub nodes:

• <bins>, integer or array like, optional field, sets the number of bins if an integer is used
or a sequence of edges if a python list is used.
Default: 10

• <normed>, boolean, optional field, if True then the the histogram will be normalized to 1.
Default: False

• <weights>, sequence, optional field, represents an array of weights, of the same shape as
x. Each value in x only contributes its associated weight towards the bin count (instead of
1). If normed is True, the weights are normalized, so that the integral of the density over the
range remains 1.
Default: None
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• <cumulative>, boolean, optional field, if True, then a histogram is computed where
each bin gives the counts in that bin plus all bins for smaller values. The last bin gives
the total number of data points. If normed is also True then the histogram is normalized
such that the last bin equals 1. If cumulative evaluates to less than 0 (e.g., -1), the direction
of accumulation is reversed. In this case, if normed is also True, then the histogram is
normalized such that the first bin equals 1.
Default: False

• <histtype>, string, optional field, The type of histogram to draw:

– bar is a traditional bar-type histogram. If multiple data sets are given the bars are
arranged side by side.

– barstacked is a bar-type histogram where multiple data sets are stacked on top of each
other.

– step generates a line plot that is by default unfilled.

– stepfilled generates a line plot that is by default filled.

Default: bar

• <align>, string, optional field, controls how the histogram is plotted.

– left bars are centered on the left bin edge.

– mid bars are centered between the bin edges.

– right bars are centered on the right bin edges.

Default: mid

• <orientation>, string, optional field, specifies the orientation of the histogram:

– horizontal
– vertical

Default: vertical

• <rwidth>, float, optional field, sets the relative width of the bars as a fraction of the bin
width.
Default: None

• <log>, boolean, optional field, sets a log scale.
Default: False
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• <color>, string, optional field, specifies the color of the histogram.
Default: blue;

• <stacked>, boolean, optional field, if True, multiple data elements are stacked on top of
each other. If False, multiple data sets are aranged side by side if histtype is ‘bar’ or on top
of each other if histtype is ‘step.’
Default: False

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2>[56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.hist” method in [3].

11.2.5 2D & 3D Stem plot

In order to create a “stem” plot, either 2D or 3D, the user needs to write in the <type> body the
keyword “stem.” In order to customize the plot, the user can define the following XML sub nodes:

• <linefmt>, string, optional field, sets the line style used in the plot.
Default: b-

• <markerfmt>, string, optional field, sets the type of marker format to use in the plot.
Default: bo

• <basefmt>, string, optional field, sets the base format.
Default: r-

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>
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The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.).

For reference regarding the available kwargs, see “matplotlib.pyplot.stem” method in [3].

11.2.6 2D Step plot

In order to create a 2D “step” plot, the user needs to write in the <type> body the keyword “step.”
In order to customize the plot, the user can define the following XML sub nodes:

• <where>, string, optional field, specifies the positioning:

– pre, the interval from x[i] to x[i+1] has level y[i+1]

– post, that interval has level y[i]

– mid, the jumps in y occur half-way between the x-values

Default: mid

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.step” method in [3].

11.2.7 2D Pseudocolor plot

In order to create a 2D “pseudocolor” plot, the user needs to write in the <type> body the keyword
“pseudocolor.” In order to customize the plot, the user can define the following XML sub nodes:

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: [ linear]
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• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.pcolor” method in [3].

11.2.8 2D Contour or filledContour plots

In order to create a 2D “contour” or “filledContour” plot, the user needs to write in the <type>
body the keyword “contour” or “filledContour,” respectively. In order to customize the plot, the
user can define the following XML sub-nodes:

• <number bins>, integer, optional field, sets the number of bins.
Default: 5

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <colorMap> vector is the array to visualize. If <colorMap> is defined then the color
set used can be defined by <cmap>. If no <cmap> is given then the plot is in solid color
(default blue) as defined with <color> in <kwargs>.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>
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The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.contour” method in [3].

11.2.9 3D Surface Plot

In order to create a 3D “surface” plot, the user needs to write in the <type> body the keyword
“surface.” In order to customize the plot, the user can define the following XML sub nodes:

• <rstride>, integer, optional field, specifies the array row stride (step size).
Default: 1

• <cstride>, integer, optional field, specifies the array column stride (step size).
Default: 1

• <cmap>, string, optional field, defines the color map to use for this plot.
Default: None Note: If <colorMap> is defined then the plot will always use a color set
even if no <cmap> is given. In such a case, if no <cmap> is given, then the default color
set of “matplotlib.pyplot.surface” method in [3] is used. If <colorMap> and <cmap> are
both not defined then the plot is in solid color (default blue) as defined with <color> in
<kwargs>.

• <antialiased>, boolean, optional field, determines whether or not the rendering should
be antialiased.
Default: False

• <linewidth>, integer, optional field, defines the widths of lines rendered on the plot.
Default: 0

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <interpPointsY>, integer, optional field, sets the number of points need to be used for
interpolation of the y axis.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

99



<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.surface” method in [3].

11.2.10 3D Wireframe Plot

In order to create a 3D “wireframe” plot, the user needs to write in the <type> body the keyword
“wireframe.” In order to customize the plot, the user can define the following XML sub nodes:

• <rstride>, integer, optional field, sets the array row stride (step size).
Default: 1

• <cstride>, integer, optional field, sets the array column stride (step size).
Default: 1

• <cmap>, string, optional field, defines the color map to use for this plot.
Default: None Note: <cmap> is not applicable in the current version of MatPlotLib for
wireframe plots. However, if the colorMap option is set then a surface plot is plotted with a
transparency of 0.4 on top of wireframe to give a visual colormap. Note: If <colorMap>
is defined then the plot will always use a color set even if no <cmap> is given. In such a
case, if no <cmap> is given, then the default color set of “matplotlib.pyplot.surface” method
in [3] is used. If <colorMap> and <cmap> are both not defined then the plot is in solid
color (default blue) as defined with <color> in <kwargs>.

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <interpPointsY>, integer, optional field, sets the number of points need to be used for
interpolation of the y axis.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

100



<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.wireframe” method in [3].

11.2.11 3D Tri-surface Plot

In order to create a 3D “tri-surface” plot, the user needs to write in the <type> body the keyword
“tri-surface.” In order to customize the plot, the user can define the following XML sub nodes:

• <color>, string, optional field, sets the color of the surface patches.
Default: b

• <shade>, boolean, optional field, determines whether to apply shading or not.
Default: False

• <cmap>, string, optional field, defines the color map to use for this plot.
Default: None Note: If <colorMap> is defined then the plot will always use a color set
even if no <cmap> is given. In such a case, if no <cmap> is given, then the default color
set of “matplotlib.pyplot.trisurface” method in [3] is used. If <colorMap> and <cmap>
are both not defined then the plot is in solid color (default blue) as defined with <color>
in <kwargs>.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.trisurface” method in [3].
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11.2.12 3D Contour or filledContour plots

In order to create a 3D “Contour” or “filledContour” plot, the user needs to write in the <type>
body the keyword “contour3D” or “filledContour3D,” respectively. In order to customize these
plots, the user can define the following XML sub nodes:

• <number bins>, integer, optional field, sets the number of bins to use.
Default: 5

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <interpPointsY>, integer, optional field, sets the number of points need to be used for
interpolation of the y axis.

• <colorMap> vector is the array to visualize. If <colorMap> is defined then the color
set used can be defined by <cmap>. If no <cmap> is given then the plot is in solid color
(default blue) as defined with <color> in <kwargs>.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.contour3d” method in [3].

11.2.13 Example XML input

<OutStreamManager>
<Plot name=’2DHistoryPlot’ dim=’2’ interactive=’False’

overwrite=’False’>
<actions>
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<how>pdf,png,eps</how>
<title>
<text>***</text>

</title>
</actions>
<plot_settings>

<plot>
<type>line</type>
<x>stories|Output|time</x>
<y>stories|Output|pipe1_Hw</y>
<kwargs>
<color>green</color>
<label>pipe1-Hw</label>

</kwargs>
</plot>
<plot>
<type>line</type>
<x>stories|Output|time</x>
<y>stories|Output|pipe1_aw</y>
<kwargs>
<color>blue</color>
<label>pipe1-aw</label>

</kwargs>
</plot>
<xlabel>time [s]</xlabel>
<ylabel>evolution</ylabel>

</plot_settings>
</Plot>

</OutStreamManager>
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12 Models

In RAVEN, Models are important entities. A model is an object that employs a mathematical
representation of a phenomenon, either of a physical or other nature (e.g. statistical operators,
etc.). From a practical point of view, it can be seen, as a “black box” that, given an input, returns
an output.

RAVEN has a strict classification of the different types of models. Each “class” of models is
represented by the definition reported above, but it can be further classified based on its particular
functionalities:

• <Code> represents an external system code that employs a high fidelity physical model.

• <Dummy> acts as “transfer” tool. The only action it performs is transferring the the infor-
mation in the input space (inputs) into the output space (outputs). For example, it can be
used to check the effect of a sampling strategy, since its outputs are the sampled parameters’
values (input space) and a counter that keeps track of the number of times an evaluation has
been requested.

• <ROM>, or reduced order model, is a mathematical model trained to predict a response of
interest of a physical system. Typically, ROMs trade speed for accuracy representing a
faster, rough estimate of the underlying phenomenon. The “training” process is performed by
sampling the response of a physical model with respect to variation of its parameters subject
to probabilistic behavior. The results (outcomes of the physical model) of the sampling are
fed into the algorithm representing the ROM that tunes itself to replicate those results.

• <ExternalModel>, as its name suggests, is an entity existing outside the RAVEN frame-
work that is embedded in the RAVEN code at run time. This object allows the user to create
a Python module that will be treated as a predefined internal model object.

• <PostProcessor> is a container of all the actions that can manipulate and process a data
object in order to extract key information, such as statistical quantities, clustering, etc.

Before analyzing each model in detail, it is important to mention that each type needs to be con-
tained in the main XML node <Models>, as reported below:

Example:

<Simulation>
...
<Models>

...
<WhatEverModel name=’whatever’>
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...
</WhatEverModel>
...

</Models>
...

</Simulation>

In the following sub-sections each Model type is fully analyzed and described.

12.1 Code

As already mentioned, the Code model represents an external system software employing a high
fidelity physical model. The link between RAVEN and the driven code is performed at run-time,
through coded interfaces that are the responsible for transferring information from the code to
RAVEN and vice versa. In Section 15, all of the available interfaces are reported and, for advanced
users, Section 16 explains how to couple a new code.

The specifications of this model must be defined within a <Code> XML block. This XML
node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, specifies the code that needs to be associated to this
Model. Note: See Section 15 for a list of currently supported codes.

This model can be initialized with the following children:

• <executable> string, required field specifies the path of the executable to be used.
Note: Either an absolute or relative path can be used.

• <alias> string, optional field specifies aliases for any variables of interest coming from
the code to which this model refers. These aliases can be used anywhere in the RAVEN
input to refer to the code variables. In the body of this node the user specifies the name of
the variable that RAVEN will look for in the output files of the code. The actual alias, usable
throughout the input, is instead defined in the variable attribute of this tag. Note: The
user can specify as many aliases as needed.
Default: None

• <clargs> string, optional field allows addition of command-line arguments to the execu-
tion command. If the code interface specified in <Code> subType does not specify how
to determine the input file(s), this node must be used to specify them. There are several types
of <clargs>, based on the type:
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– type string, required field specifies the type of command-line argument to add. Op-
tions include ’input’, ’output’, ’prepend’, ’postpend’, and ’text’.

– arg string, optional field specifies the flag to be used before the entry. For example,
arg=’-i’ would place a -i before the entry in the execution command. Required
for the ’output’ type.

– extension string, optional field specifies the type of file extension to use (for ex-
ample, -i or -o). This links the <Input> file in the <Step> to this location in the
execution command. Required for ’input’ type.

The execution command is combined in the order ’prepend’, <executable>, ’input’,
’output’, ’text’, ’postpend’.

Example:

<Simulation>
...
<Models>

...
<Code name=’aUserDefinedName’ subType=’RAVEN_Driven_code’>

<executable>path_to_executable</executable>
<alias variable=’internal_variable_name1’>

External_Code_Variable_Name_1
</alias>
<alias variable=’internal_variable_name2’>

External_Code_Variable_Name_2
</alias>

</Code>
...

</Models>
...

</Simulation>

12.2 Dummy

The Dummy model is an object that acts as a pass-through tool. The only action it performs is
transferring the information in the input space (inputs) to the output space (outputs). For example,
it can be used to check the effect of a particular sampling strategy, since its outputs are the sampled
parameters’ values (input space) and a counter that keeps track of the number of times an evaluation
has been requested.

The specifications of this model must be defined within a <Dummy> XML block. . This XML
node accepts the following attributes:
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• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, this attribute must be kept empty.

Given a particular Step using this model, if this model is linked to a Data with the role of Output,
it expects one of the output parameters will be identified by the keyword “OutputPlaceHolder” (see
Section 14).

Example:

<Simulation>
...
<Models>

...
<Dummy name=’aUserDefinedName’ subType=’’/>
...

</Models>
...

</Simulation>

12.3 ROM

A Reduced Order Model (ROM) is a mathematical model consisting of a fast solution trained to
predict a response of interest of a physical system. The “training” process is performed by sam-
pling the response of a physical model with respect to variations of its parameters subject, for
example, to probabilistic behavior. The results (outcomes of the physical model) of the sampling
are fed into the algorithm representing the ROM that tunes itself to replicate those results. RAVEN
supports several different types of ROMs, both internally developed and imported through an ex-
ternal library called “scikit-learn” [4].

Currently in RAVEN, the ROMs are classified into 4 sub-types that, once chosen, provide
access to several different algorithms. These sub-types are specified in the subType attribute and
should be one of the following:

• ’NDspline’

• ’GaussPolynomialRom’

• ’NDinvDistWeigth’

• ’microSphere’
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• ’SciKitLearn’

The specifications of this model must be defined within a <ROM> XML block. This XML
node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, defines which of the 4 sub-types should be used, choos-
ing among the previously reported types. This choice conditions the subsequent the required
and/or optional <ROM> sub-nodes.

In the <ROM> input block, the following XML sub-nodes are required, independent of the
subType specified:

• < Features > , comma separated string, required field.. In this node, the user needs
to specify the names of the features of this ROM. NB. These parameters are going to be
requested for the training of this object (see Section 14.4;

• < Target > , comma separated string, required field.. This XML node contains a comma
separated list of the targets of this ROM. By Instance, these parameters are the Figure of
Merits this ROM is supposed to predict.
NB. These parameters are going to be requested for the training of this object (see Section
14.4.

• < NormalizeData > , boolean, optional field.. This XML node controls the normalization
of data used for training the ROM. If True, the Training set is going to be normalized with
respect to Average and Standard Deviation of the data set; no normalization is applied if this
field is False. Default = True.

The types and meaning of the remaining sub-nodes depend on the sub-type specified in the
attribute subType. In the sections that follow, the specifications of each type are reported.

12.3.1 NDspline

The NDspline sub-type contains a single ROM type, based on an N -dimensional spline interpo-
lation/extrapolation scheme. In spline interpolation, the interpolant is a special type of piecewise
polynomial called a spline. The interpolation error can be made small even when using low degree
polynomials for the spline. Spline interpolation avoids the problem of Runge’s phenomenon, in
which oscillation can occur between points when interpolating using higher degree polynomials.

In order to use this ROM, the <ROM> attribute subType needs to be ’NDspline’ (see the
example below). No further XML sub-nodes are required. Note: This ROM type must be trained
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from a regular Cartesian grid. Thus, it can only be trained from the outcomes of a grid sampling
strategy.

Example:

<Simulation>
...
<Models>

...
<ROM name=’aUserDefinedName’ subType=’NDspline’>

<Features>var1,var2,var3</Features>
<Target>result1,result2</Target>

</ROM>
...

</Models>
...

</Simulation>

12.3.2 GaussPolynomialRom

The GaussPolynomialRom sub-type contains a single ROM type, based on a characteristic Gaus-
sian polynomial fitting scheme: generalized polynomial chaos expansion (gPC). In gPC, sets of
polynomials orthogonal with respect to the distribution of uncertainty are used to represent the
original model. The method converges moments of the original model faster than Monte Carlo
for small-dimension uncertainty spaces (N < 15). In order to use this ROM, the <ROM> attribute
subType needs to be ’GaussPolynomialRom’ (see the example below). In addition to the
common <Target> and <Features>, this ROM requires two more nodes and can accept mul-
tiple entries of a third optional node.

• <IndexSet>, string, required field, specifies the rules by which to construct multidi-
mensional polynomials. The options are “TensorProduct,” “TotalDegree,” and “Hyperbolic-
Cross.” Total degree is efficient for uncertain inputs with a large degree of regularity, while
hyperbolic cross is more efficient for low-regularity input spaces.

• <PolynomialOrder>, integer, required field, indicates the maximum polynomial order
in any one dimension to use in the polynomial chaos expansion. Note: If non-equal impor-
tance weights are supplied in the optional <Interpolation> node, the actual polynomial
order in dimensions with high importance might exceed this value; however, this value is still
used to limit the relative overall order.

• <Interpolation>, string, optional field, offers the option to specify quadrature, poly-
nomials, and importance weights for the given variable name. The ROM accepts any number
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of <Interpolation> nodes up to the dimensionality of the input space. This node ac-
cepts several attributes, all of which are optional and default to the code-defined optimal
choices based on the input dimension uncertainty distribution:

– quad, string, optional field, specifies the quadrature type to use for collocation in
this dimension. The default options depend on the uncertainty distribution of the input
dimension, as shown in Table 1. Additionally, Clenshaw Curtis quadrature can be used
for any distribution that doesn’t include an infinite bound.
Default: see Table 1. Note: For an uncertain distribution aside from the four listed
on Table 1, this ROM makes use of the uniform-like range of the distribution’s CDF
to apply quadrature that is suited uniform uncertainty (Legendre). It converges more
slowly than the four listed, but are viable choices.

– poly, string,optional field, specifies the interpolating polynomial family to use for the
polynomial expansion in this dimension. The default options depend on the quadrature
type chosen, as shown in Table 1. Currently, no polynomials are available outside the
default.
Default: see Table 1.

– weight, float, optional field, delineates the importance weighting of this dimension.
A larger importance weight will result in increased resolution for this dimension at the
cost of resolution in lower-weighted dimensions. The algorithm normalizes weights at
run-time.
Default: 1.

– cdf, boolean, option field, indicates that the code should use the CDF of the distribu-
tion instead of the distribution itself (see note for quad). Default is ’false’ for the
four distributions in Table 1 and ’true’ otherwise.
Default: “false” if listed on Table 1, “true” otherwise.

Unc. Distribution Default Quadrature Default Polynomials
Uniform Legendre Legendre
Normal Hermite Hermite
Gamma Laguerre Laguerre

Beta Jacobi Jacobi
Other Legendre* Legendre*

Table 1. GaussPolynomialRom defaults

Note: This ROM type must be trained from a collocation quadrature set. Thus, it can only be
trained from the outcomes of a SparseGridCollocation sampler. Also, this ROM must be referenced
in the SparseGridCollocation sampler in order to accurately produce the necessary sparse grid
points to train this ROM.
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Example:

<Simulation>
...
<Models>

...
<ROM name=’myRom’ subType=’GaussPolynomialRom’>

<Target>ans</Target>
<Features>x1,x2</Features>
<IndexSet>TotalDegree</IndexSet>
<PolynomialOrder>4</PolynomialOrder>
<Interpolation quad=’Legendre’ poly=’Legendre’ weight=’1’

cdf=’False’>x1</Interpolation>
<Interpolation quad=’ClenshawCurtis’ poly=’Jacobi’

weight=’2’ cdf=’False’>x2</Interpolation>
</ROM>
...

</Models>
...

</Simulation>

12.3.3 NDinvDistWeigth

The NDinvDistWeigth sub-type contains a single ROM type, based on an N -dimensional in-
verse distance weighting formulation. Inverse distance weighting (IDW) is a type of deterministic
method for multivariate interpolation with a known scattered set of points. The assigned values to
unknown points are calculated via a weighted average of the values available at the known points.

In order to use this Reduced Order Model, the <ROM> attribute subType needs to be xml-
StringNDinvDistWeigth (see the example below). This model can be initialized with the following
child:

• <p>, integer, required field, must be greater than zero and represents the “power param-
eter”. For the choice of value for <p>,it is necessary to consider the degree of smoothing
desired in the interpolation/extrapolation, the density and distribution of samples being inter-
polated, and the maximum distance over which an individual sample is allowed to influence
the surrounding ones (lower p means greater importance for points far away).

Example:

<Simulation>
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...
<Models>

...
<ROM name=’aUserDefinedName’ subType=’NDinvDistWeigth’>

<Features>var1,var2,var3</Features>
<Target>result1,result2</Target>
<p>3</p>
</ROM>
...

</Models>
...

</Simulation>

12.3.4 SciKitLearn

The SciKitLearn sub-type represents the container of several ROMs available in RAVEN through
the external library scikit-learn [4].

In order to use this Reduced Order Model, the <ROM> attribute subType needs to be
’SciKitLearn’ (i.e. subType=’SciKitLearn’). The specifications of a ’SciKitLearn’
ROM depend on the value assumed by the following sub-node within the main <ROM> XML node:

• <SKLtype>, vertical bar (|) separated string, required field, contains a string that repre-
sents the ROM type to be used. As mentioned, its format is:
<SKLtype>mainSKLclass|algorithm</SKLtype> where the first word (before
the “|” symbol) represents the main class of algorithms, and the second word (after the “|”
symbol) represents the specific algorithm.

Based on the <SKLtype> several different algorithms are available. In the following paragraphs
a brief explanation and the input requirements are reported for each of them.

12.3.4.1 Linear Models

The LinearModels’ algorithms implement generalized linear models. They include Ridge regres-
sion, Bayesian regression, lasso, and elastic net estimators computed with least angle regression
and coordinate descent. This class also implements stochastic gradient descent related algorithms.
In the following, all of the linear models available in RAVEN are reported.
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12.3.4.1.1 Linear Model: Automatic Relevance Determination Regression
The Automatic Relevance Determination (ARD) regressor is a hierarchical Bayesian approach
where hyperparameters explicitly represent the relevance of different input features. These rele-
vance hyperparameters determine the range of variation for the parameters relating to a particular
input, usually by modelling the width of a zero-mean Gaussian prior on those parameters. If the
width of the Gaussian is zero, then those parameters are constrained to be zero, and the correspond-
ing input cannot have any effect on the predictions, therefore making it irrelevant. ARD optimizes
these hyperparameters to discover which inputs are relevant. In order to use the Automatic Rele-
vance Determination regressor, the user needs to set the sub-node:

<SKLtype>linear model|ARDRegression</SKLtype>.

In addition to this XML node, several others are available: .

• <n iter>, integer, optional field, is the maximum number of iterations.
Default: 300

• <tol>, float, optional field, stop the algorithm if the convergence error felt below the tol-
erance specified here.
Default: 1.e-3

• <alpha 1>, float, optional field, is a shape hyperparameter for the Gamma distribution
prior over the α parameter.
Default: 1.e-6

• <alpha 2>, float, optional field, inverse scale hyperparameter (rate parameter) for the
Gamma distribution prior over the α parameter.
Default: 1.e-6

• <lambda 1>, float, optional field, shape hyperparameter for the Gamma distribution prior
over the λ parameter.
Default: 1.e-6

• <lambda 2>, float, optional field, inverse scale hyperparameter (rate parameter) for the
Gamma distribution prior over the λ parameter.
Default: 1.e-6

• <compute score>, boolean, optional field, if True, compute the objective function at
each step of the model.
Default: False

• <threshold lambda>, float, optional field, specifies the threshold for removing (prun-
ing) weights with high precision from the computation.
Default: 1.e+4
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• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

12.3.4.1.2 Linear Model: Bayesian ridge regression

The Bayesian ridge regression estimates a probabilistic model of the regression problem as
described above. The prior for the parameter w is given by a spherical Gaussian:

p(w|λ) = N (w|0, λ−1Ip) (1)

The priors over α and λ are chosen to be gamma distributions, the conjugate prior for the precision
of the Gaussian. The resulting model is called Bayesian ridge regression, and is similar to the
classical ridge regression. The parameters w, α, and λ are estimated jointly during the fit of the
model. The remaining hyperparameters are the parameters of the gamma priors over α and λ.
These are usually chosen to be non-informative. The parameters are estimated by maximizing the
marginal log likelihood. In order to use the Bayesian ridge regressor, the user needs to set the
sub-node:

<SKLtype>linear model|BayesianRidge</SKLtype>.

In addition to this XML node, several others are available:

• <n iter>, integer, optional field, is the maximum number of iterations.
Default: 300

• <tol>, float, optional field, stop the algorithm if the convergence error felt below the tol-
erance specified here.
Default: 1.e-3

• <alpha 1>, float, optional field, is a shape hyperparameter for the Gamma distribution
prior over the α parameter.
Default: 1.e-6

• <alpha 2>, float, optional field, inverse scale hyperparameter (rate parameter) for the
Gamma distribution prior over the α parameter.
Default: 1.e-6
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• <lambda 1>, float, optional field, shape hyperparameter for the Gamma distribution prior
over the λ parameter.
Default: 1.e-6

• <lambda 2>, float, optional field, inverse scale hyperparameter (rate parameter) for the
Gamma distribution prior over the λ parameter.
Default: 1.e-6

• <compute score>, boolean, optional field, if True, compute the objective function at
each step of the model.
Default: False

• <threshold lambda>, float, optional field, specifies the threshold for removing (prun-
ing) weights with high precision from the computation.
Default: 1.e+4

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

12.3.4.1.3 Linear Model: Elastic Net
The Elastic Net is a linear regression technique with combined L1 and L2 priors as regularizers. It
minimizes the objective function:

1/(2∗nsamples)∗ ||y−Xw||22 +alpha∗ l1ratio∗ ||w||1 + 0.5∗alpha∗ (1− l1ratio)∗ ||w||22 (2)

In order to use the Elastic Net regressor, the user needs to set the sub-node:

<SKLtype>linear model|ElasticNet</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, specifies a constant that multiplies the penalty terms. alpha =
0 is equivalent to an ordinary least square, solved by the LinearRegression object.
Default: 1.0
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• <l1 ratio>, float, optional field, specifies the ElasticNet mixing parameter, with 0 <=
l1 ratio <= 1. For l1 ratio = 0 the penalty is an L2 penalty. For l1 ratio = 1 it is an L1
penalty. For 0 < l1 ratio < 1, the penalty is a combination of L1 and L2.
Default: 0.5

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 300

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

• <positive>, float, optional field, when set to True, this forces the coefficients to be
positive.
Default: False

12.3.4.1.4 Linear Model: Elastic Net CV
The Elastic Net CV is a linear regression similar to the Elastic Net model but with an iterative
fitting along a regularization path. The best model is selected by cross-validation.

In order to use the Elastic Net CV regressor, the user needs to set the sub-node:

<SKLtype>linear model|ElasticNetCV</SKLtype>.

In addition to this XML node, several others are available:

• <l1 ratio>, float, optional field, Float flag between 0 and 1 passed to ElasticNet (scaling
between l1 and l2 penalties). For l1 ratio = 0 the penalty is an L2 penalty. For l1 ratio = 1
it is an L1 penalty. For 0 < l1 ratio < 1, the penalty is a combination of L1 and L2 This
parameter can be a list, in which case the different values are tested by cross-validation and
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the one giving the best prediction score is used. Note that a good choice of list of values for
l1 ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as
in [.1, .5, .7, .9, .95, .99, 1].
Default: 0.5

• <eps>, float, optional field, specifies the length of the path. eps=1e-3 means that alpha min/alpha max =
1e− 3.
Default: 0.001

• <n alphas>, integer, optional field, is the number of alphas along the regularization path
used for each l1 ratio.
Default: 100

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: 1.0

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 300

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <positive>, float, optional field, when set to True, this forces the coefficients to be
positive.
Default: False

12.3.4.1.5 Linear Model: Least Angle Regression model
The Least Angle Regression model (LARS) is a regression algorithm for high-dimensional data.
The LARS algorithm provides a means of producing an estimate of which variables to include,
as well as their coefficients, when a response variable is determined by a linear combination of a
subset of potential covariates.

In order to use the Least Angle Regression model, the user needs to set the sub-node:

<SKLtype>linear model|Lars</SKLtype>.

In addition to this XML node, several others are available:

117



• <n nonzero coef>, integer, optional field, represents the target number of non-zero co-
efficients.
Default: 500

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: 1.0

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <eps>, float, optional field, represents the machine precision regularization in the computa-
tion of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike
the <tol> parameter in some iterative optimization-based algorithms, this parameter does
not control the tolerance of the optimization.
Default: 2.22e-16

• <fit path>, boolean, optional field, if True the full path is stored in the coef path attribute.
If you compute the solution for a large problem or many targets, setting fit path to False will
lead to a speedup, especially with a small alpha.
Default: True

12.3.4.1.6 Linear Model: Cross-validated Least Angle Regression model
The Cross-validated Least Angle Regression model is a regression algorithm for high-dimensional
data. It is similar to the LARS method, but the best model is selected by cross-validation. In order
to use the Cross-validated Least Angle Regression model, the user needs to set the sub-node:

<SKLtype>linear model|LarsCV</SKLtype>.

In addition to this XML node, several others are available:

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
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expected to be already centered).
Default: True

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: 1.0

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 300

• <max n alphas>, integer, optional field, specifies the maximum number of points on the
path used to compute the residuals in the cross-validation.
Default: 1000

• <eps>, float, optional field, represents the machine-precision regularization in the computa-
tion of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike
the tol parameter in some iterative optimization-based algorithms, this parameter does not
control the tolerance of the optimization.
Default: 2.22e-16

12.3.4.1.7 Linear Model trained with L1 prior as regularizer (aka the Lasso)
The Linear Model trained with L1 prior as regularizer (Lasso) is a shrinkage and selection method
for linear regression. It minimizes the usual sum of squared errors, with a bound on the sum of
the absolute values of the coefficients. In order to use the Linear Model trained with L1 prior as
regularizer (Lasso), the user needs to set the sub-node:

<SKLtype>linear model|Lasso</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, sets a constant multiplier for the L1 term.
Default: 1.0 alpha = 0 is equivalent to an ordinary least square, solved by the LinearRegres-
sion object. For numerical reasons, using alpha = 0 with the Lasso object is not advised and
you should instead use the LinearRegression object.
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• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like]. Note: For sparse input this option is always True to preserve sparsity.

• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.

• <positive>, float, optional field, when set to True, this forces the coefficients to be
positive.

12.3.4.1.8 Lasso linear model with iterative fitting along a regularization path

The Lasso linear model with iterative fitting along a regularization path is an algorithm of the
Lasso family, that computes the linear regressor weights, identifying the regularization path in an
iterative fitting (see http://www.jstatsoft.org/v33/i01/paper)

In order to use the Lasso linear model with iterative fitting along a regularization path regres-
sor, the user needs to set the sub-node:

<SKLtype>linear model|LassoCV</SKLtype>.

In addition to this XML node, several others are available:

• <eps>, float, optional field, represents the length of the path. eps=1e-3 means that al-
pha min / alpha max = 1e-3.

• <n alphas>, int, optional field, sets the number of alphas along the regularization path.
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• <alphas>, numpy array, optional field, lists the locations of the alphas used to compute
the models. If None, alphas are set automatically.

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].

• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <positive>, float, optional field, when set to True, this forces the coefficients to be
positive.

12.3.4.1.9 Lasso model fit with Least Angle Regression

The Lasso model fit with Least Angle Regression is a cross-validated least angle regression
model. In order to use the Cross-validated Least Angle Regression model regressor, the user
needs to set the sub-node:

<SKLtype>linear model|LarsCV</SKLtype>.

In addition to this XML node, several others are available:

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
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• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <max n alphas>, integer, optional field, specifies the maximum number of points on the
path used to compute the residuals in the cross-validation.

• <eps>, float, optional field, sets the machine precision regularization in the computation of
the Cholesky diagonal factors. Increase this for very ill-conditioned systems.

12.3.4.1.10 Cross-validated Lasso, using the LARS algorithm

The Cross-validated Lasso, using the LARS algorithm is a cross-validated Lasso, using the
LARS algorithm.

In order to use the Cross-validated Lasso, using the LARS algorithm regressor, the user needs
to set the sub-node:

<SKLtype>linear model|LassoLarsCV</SKLtype>.

In addition to this XML node, several others are available:

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].

• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <max n alphas>, integer, optional field, specifies the maximum number of points on the
path used to compute the residuals in the cross-validation.

• <eps>, float, optional field, specifies the machine precision regularization in the computa-
tion of the Cholesky diagonal factors. Increase this for very ill-conditioned systems.
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12.3.4.1.11 Lasso model fit with Lars using BIC or AIC for model selection

The Lasso model fit with Lars using BIC or AIC for model selection is a Lasso model fit with
Lars using BIC or AIC for model selection. The optimization objective for Lasso is: (1/(2 ∗
n samples)) ∗ ||y − Xw||22 + alpha ∗ ||w||1 AIC is the Akaike information criterion and BIC is
the Bayes information criterion. Such criteria are useful in selecting the value of the regularization
parameter by making a trade-off between the goodness of fit and the complexity of the model. A
good model explains the data well while maintaining simplicity. In order to use the Lasso model
fit with Lars using BIC or AIC for model selection regressor, the user needs to set the sub-node:

<SKLtype>linear model|LassoLarsIC</SKLtype>.

In addition to this XML node, several others are available:

• <criterion>, ‘bic’ — ‘aic’ , specifies the type of criterion to use.

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].

• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <eps>, float, optional field, represents the machine precision regularization in the computa-
tion of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike
the tol parameter in some iterative optimization-based algorithms, this parameter does not
control the tolerance of the optimization.

12.3.4.1.12 Ordinary least squares Linear Regression

The Ordinary least squares Linear Regression is a method for estimating the unknown parame-
ters in a linear regression model, with the goal of minimizing the differences between the observed
responses in some arbitrary dataset and the responses predicted by the linear approximation of
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the data. In order to use the Ordinary least squares Linear Regressor, the user needs to set the
sub-node:

<SKLtype>linear model|LinearRegression</SKLtype>.

In addition to this XML node, several others are available:

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

12.3.4.1.13 Logistic Regression
The Logistic Regression implements L1 and L2 regularized logistic regression using the liblinear
library. It can handle both dense and sparse input. This regressor uses C-ordered arrays or CSR
matrices containing 64-bit floats for optimal performance; any other input format will be converted
(and copied). In order to use the Logistic Regressor, the user needs to set the sub-node:

<SKLtype>linear model|LogisticRegression</SKLtype>.

In addition to this XML node, several others are available:

• <penalty>, string, ‘l1’ or ‘l2’, specifies the norm used in the penalization.

• <dual>, boolean, specifies the dual or primal formulation. Dual formulation is only imple-
mented for the l2 penalty. Prefer dual=False when n samples ¿ n features.

• <C>, float, optional field, is the inverse of the regularization strength; must be a positive
float. Like in support vector machines, smaller values specify stronger regularization.
Default: 1.0

• <fit intercept>, boolean, specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Default: True

• <intercept scaling>, float, optional field, when self.fit intercept is True, instance
vector x becomes [x, self.intercept scaling], i.e. a “synthetic” feature with constant value
equal to intercept scaling is appended to the instance vector. The intercept becomes inter-
cept scaling * synthetic feature weight. Note: The synthetic feature weight is subject to
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l1/l2 regularization as are all other features. To lessen the effect of regularization on syn-
thetic feature weight (and therefore on the intercept) intercept scaling has to be increased.
Default: 1.0

• <class weight>, {dict, ‘auto’}, optional, over-/undersamples the samples of each class
according to the given weights. If not given, all classes are supposed to have weight one.
The ‘auto’ mode selects weights inversely proportional to class frequencies in the training
set.

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None

• <tol>, float, optional field, specifies the tolerance for stopping criteria.

12.3.4.1.14 Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
The Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer is a regressor where
the optimization objective for Lasso is: (1/(2 ∗ n samples)) ∗ ||Y −XW ||2F ro+ alpha ∗ ||W ||21
Where: ||W ||21 =

∑
i

√∑
j w

2
ij i.e. the sum of norm of each row. In order to use the Multi-task

Lasso model trained with L1/L2 mixed-norm as regularizer regressor, the user needs to set the
sub-node:

<SKLtype>linear model|MultiTaskLasso</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, sets the constant multiplier for the L1/L2 term.
Default: 1.0

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4
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• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.

12.3.4.1.15 Multi-task Elastic Net model trained with L1/L2 mixed-norm as regularizer

The Multi-task Elastic Net model trained with L1/L2 mixed-norm as regularizer is a regres-
sor where the optimization objective for MultiTaskElasticNet is: (1/(2 ∗ n samples)) ∗ ||Y −
XW ||F ro2 + alpha ∗ l1 ratio ∗ ||W ||21 + 0.5 ∗ alpha ∗ (1 − l1 ratio) ∗ ||W ||F ro2 Where:
||W ||21 =

∑
i

√∑
j w

2
ij i.e. the sum of norm of each row. In order to use the Multi-task

ElasticNet model trained with L1/L2 mixed-norm as regularizer regressor, the user needs to set the
sub-node:

<SKLtype>linear model|MultiTaskElasticNet</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, represents a constant multiplier for the L1/L2 term.
Default: 1.0

• <l1 ratio>, float, represents the Elastic Net mixing parameter, with 0 < l1 ratio ≤ 1.
For l1 ratio = 0 the penalty is an L1/L2 penalty. For l1 ratio = 1 it is an L1 penalty. For
0 < l1 ratio < 1, the penalty is a combination of L1/L2 and L2.

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
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12.3.4.1.16 Orthogonal Mathching Pursuit model (OMP)

The Orthogonal Mathching Pursuit model (OMP) is a type of sparse approximation which
involves finding the “best matching” projections of multidimensional data onto an over-complete
dictionary, D. In order to use the Orthogonal Mathching Pursuit model (OMP) regressor, the user
needs to set the sub-node:

<SKLtype>linear model|OrthogonalMatchingPursuit</SKLtype>.

In addition to this XML node, several others are available:

• <n nonzero coefs>, int, optional field, represents the desired number of non-zero en-
tries in the solution. If None, this value is set to 10% of n features.
Default: None

• <tol>, float, optional field, specifies the maximum norm of the residual. If not None,
overrides n nonzero coefs.

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <precompute>, {True, False, ‘auto’}, specifies whether to use a precomputed Gram and
Xy matrix to speed up calculations. Improves performance when n targets or n samples is
very large. Note: If you already have such matrices, you can pass them directly to the fit
method.
Default: ‘auto’

12.3.4.1.17 Cross-validated Orthogonal Mathching Pursuit model (OMP)

The Cross-validated Orthogonal Mathching Pursuit model (OMP) is a regressor similar to
OMP which has good performance in sparse recovery. In order to use the Cross-validated Or-
thogonal Mathching Pursuit model (OMP) regressor, the user needs to set the sub-node:

<SKLtype>linear model|OrthogonalMatchingPursuitCV</SKLtype>.

In addition to this XML node, several others are available:

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
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expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <max iter>, integer, optional field, specifies the maximum number of iterations. Max-
imum number of iterations to perform, therefore maximum features to include 10% of
n features but at least 5 if available.

• <cv>, cross-validation generator, optional, see sklearn.cross validation.
Default: 5-fold strategy

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

12.3.4.1.18 Passive Aggressive Classifier
The Passive Aggressive Classifier is a principled approach to linear classification that advocates
minimal weight updates i.e., the least required to correctly classify the current training instance.
In order to use the Passive Aggressive Classifier, the user needs to set the sub-node:

<SKLtype>linear model|PassiveAggressiveClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <C>, float, specifies the maximum step size (regularization).
Default: 1.0

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter>, int, optional field, specifies the number of passes over the training data (aka
epochs).
Default: 5

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: False

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None
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• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <loss>, string, optional field, the loss function to be used:

– hinge: equivalent to PA-I (http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf)

– squared hinge: equivalent to PA-II (http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf)

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.

12.3.4.1.19 Passive Aggressive Regressor
The Passive Aggressive Regressor is similar to the Perceptron in that it does not require a learning
rate. However, contrary to the Perceptron, this regressor includes a regularization parameter, C.

In order to use the Passive Aggressive Regressor, the user needs to set the sub-node:

<SKLtype>linear model|PassiveAggressiveRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <C>, float, sets the maximum step size (regularization).
Default: 1.0

• <epsilon>, float, if the difference between the current prediction and the correct label is
below this threshold, the model is not updated.

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter>, int, optional field, specifies the number of passes over the training data (aka
epochs).
Default: 5

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: False

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
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• <loss>, string, optional field, specifies the loss function to be used:

– epsilon insensitive: equivalent to PA-I in the reference paper (http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf).

– squared epsilon insensitive: equivalent to PA-II in the reference paper (http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf).

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.

12.3.4.1.20 Perceptron

The Perceptron method is an algorithm for supervised classification of an input into one of
several possible non-binary outputs. It is a type of linear classifier, i.e. a classification algorithm
that makes its predictions based on a linear predictor function combining a set of weights with the
feature vector. The algorithm allows for online learning, in that it processes elements in the training
set one at a time. In order to use the Perceptron classifier, the user needs to set the sub-node:

<SKLtype>linear model|Perceptron</SKLtype>.

In addition to this XML node, several others are available:

• <penalty>, None, ‘l2’ or ‘l1’ or ‘elasticnet’, defines the penalty (aka regularization term)
to be used.
Default: None

• <alpha>, float, sets the constant multiplier for the regularization term if regularization is
used.
Default: 0.0001

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter>, int, optional field, specifies the number of passes over the training data (aka
epochs).
Default: 5

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: False

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None
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• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <eta0>, double, optional field, defines the constant multiplier for the updates.
Default: 1.0

• <class weight>, dict, class label, specifies the preset for the class weight fit parameter.
Weights associated with classes. If not given, all classes are supposed to have weight one.
The “auto” mode uses the values of y to automatically adjust weights inversely proportional
to class frequencies.

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.

12.3.4.1.21 Randomized Lasso
The Randomized Lasso works by resampling the training data and computing a Lasso on each
resampling. In short, the features selected more often are good features. It is also known as
stability selection. In order to use the Randomized Lasso regressor, the user needs to set the
sub-node:

<SKLtype>linear model|RandomizedLasso</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, ‘aic’, or ‘bic’, optional, defines the regularization parameter α in the Lasso.

• <scaling>, float, optional field, specifies the alpha parameter used to randomly scale the
Should be between 0 and 1.

• <sample fraction>, float, optional field, defines the fraction of samples to be used in
each randomized design. Should be between 0 and 1. If 1, all samples are used.

• <n resampling>, int, optional field, is the number of randomized models used.

• <selection threshold>, float, optional field, sets the score above for which features
should be selected.

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True
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• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].

• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <eps>, float, optional field, defines the machine precision regularization in the computation
of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike
the ‘tol’ parameter in some iterative optimization-based algorithms, this parameter does not
control the tolerance of the optimization.

• <random state>, int, RandomState instance or None, optional, if int, random state is
the seed used by the random number generator; If RandomState instance, random state is
the random number generator; If None, the random number generator is the RandomState
instance used by np.random.
Default: None

12.3.4.1.22 Randomized Logistic Regression

The Randomized Logistic Regression works by resampling the training data and computing a
logistic regression on each resampling. In short, the features selected more often are good features.
It is also known as stability selection. In order to use the Randomized Logistic Regressor, the user
needs to set the sub-node:

<SKLtype>linear model|RandomizedLogisticRegression</SKLtype>.

In addition to this XML node, several others are available:

• <C>, float, optional field, specifies the regularization parameterC in the LogisticRegression.

Default: 1

• <scaling>, float, optional field (default=0.5), sets the alpha parameter used to randomly
scale the features. Should be between 0 and 1.

• <sample fraction>, float, optional field, is the fraction of samples to be used in each
randomized design. Should be between 0 and 1. If 1, all samples are used.
Default: 0.75

• <n resampling>, int, optional field, sets the number of randomized models.
Default: 200
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• <selection threshold>, float, optional field, sets the score above which features
should be selected.
Default: 0.25

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <tol>, float, optional field, specifies the tolerance for stopping criteria.
Default: 1=e-3

• <random state>, int, RandomState instance or None, optional, if int, random state is
the seed used by the random number generator; If RandomState instance, random state is
the random number generator; If None, the random number generator is the RandomState
instance used by np.random.
Default: None

12.3.4.1.23 Linear least squares with l2 regularization
The Linear least squares with l2 regularization solves a regression model where the loss function
is the linear least squares function and the regularization is given by the l2-norm. Also known as
Ridge Regression or Tikhonov regularization. This estimator has built-in support for multivariate
regression (i.e., when y is a 2d-array of shape [n samples, n targets]). In order to use the Linear
least squares with l2 regularization, the user needs to set the sub-node:

<SKLtype>linear model|Ridge</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, array-like, shape = [n targets] Small positive values of alpha improve the
conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to
(2 ∗ C)−1 in other linear models such as LogisticRegression or LinearSVC. If an array is
passed, penalties are assumed to be specific to the targets. Hence they must correspond in
number.

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True
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• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: determined by scipy.sparse.linalg.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True

• <solver>, {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse cg’}, specifies the solver to use in the
computational routines:

– ‘auto’ chooses the solver automatically based on the type of data.

– ‘svd’ uses a singular value decomposition of X to compute the ridge coefficients. More
stable for singular matrices than ‘cholesky.’

– ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solu-
tion.

– ‘sparse cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an
iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale data
(possibility to set tol and max iter).

– ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It
is the fatest but may not be available in old scipy versions. It also uses an iterative
procedure.

All three solvers support both dense and sparse data.

12.3.4.1.24 Classifier using Ridge regression

The Classifier using Ridge regression is a classifier based on linear least squares with l2 regu-
larization. In order to use the Classifier using Ridge regression, the user needs to set the sub-node:

<SKLtype>linear model|RidgeClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, small positive values of alpha improve the conditioning of the problem and
reduce the variance of the estimates. Alpha corresponds to (2 ∗ C)−1 in other linear models
such as LogisticRegression or LinearSVC.

• <class weight>, dict, optional field, specifies weights associated with classes in the
form class label: weight. If not given, all classes are assumed to have weight one.

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True
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• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: determined by scipy.sparse.linalg.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <solver>, {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse cg’}, specifies the solver to use in the
computational routines:

– ‘auto’ chooses the solver automatically based on the type of data.

– ‘svd’ uses a singular value decomposition of X to compute the ridge coefficients. More
stable for singular matrices than ‘cholesky.’

– ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solu-
tion.

– ‘sparse cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an
iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale data
(possibility to set tol and max iter).

– ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It
is the fatest but may not be available in old scipy versions. It also uses an iterative
procedure.

All three solvers support both dense and sparse data.

• <tol>, float, defines the required precision of the solution.

12.3.4.1.25 Ridge classifier with built-in cross-validation
The Ridge classifier with built-in cross-validation performs Generalized Cross-Validation, which is
a form of efficient leave-one-out cross-validation. Currently, only the n features ¿ n samples case
is handled efficiently. In order to use the Ridge classifier with built-in cross-validation classifier,
the user needs to set the sub-node:

<SKLtype>linear model|RidgeClassifierCV</SKLtype>.

In addition to this XML node, several others are available:

• <alphas>, numpy array of shape [n alphas], is an array of alpha values to try. Small pos-
itive values of alpha improve the conditioning of the problem and reduce the variance of the
estimates. Alpha corresponds to (2∗C)−1 in other linear models such as LogisticRegression
or LinearSVC.
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• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <scoring>, string, callable or None, optional, is a string (see model evaluation documen-
tation) or a scorer callable object / function with signature scorer(estimator, X, y).
Default: None

• <cv>, cross-validation generator, optional, If None, Generalized Cross-Validation (effi-
cient leave-one-out) will be used.

• <class weight>, dic, optional field, specifies weights associated with classes in the form
class label:weight. If not given, all classes are supposed to have weight one.

12.3.4.1.26 Ridge regression with built-in cross-validation

The Ridge regression with built-in cross-validation performs Generalized Cross-Validation,
which is a form of efficient leave-one-out cross-validation. In order to use the Ridge regression
with built-in cross-validation regressor, the user needs to set the sub-node:

<SKLtype>linear model|RidgeCV</SKLtype>.

In addition to this XML node, several others are available:

• <alphas>, numpy array of shape [n alphas], specifies an array of alpha values to try.
Small positive values of alpha improve the conditioning of the problem and reduce the vari-
ance of the estimates. Alpha corresponds to (2 ∗ C)−1 in other linear models such as Logis-
ticRegression or LinearSVC.

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False
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• <scoring>, string, callable or None, optional, is a string (see model evaluation documen-
tation) or a scorer callable object / function with signature scorer(estimator, X, y).
Default: None

• <cv>, cross-validation generator, optional field, if None, Generalized Cross-Validation
(efficient leave-one-out) will be used.

• <gcv mode>, {None, ‘auto,’ ‘svd,’ ‘eigen’}, optional field, is a flag indicating which strat-
egy to use when performing Generalized Cross-Validation. Options are:

– ‘auto:’ use svd if n samples ¿ n features or when X is a sparse matrix, otherwise use
eigen

– ‘svd:’ force computation via singular value decomposition of X (does not work for
sparse matrices)

– ‘eigen:’ force computation via eigendecomposition of XTX

The ‘auto’ mode is the default and is intended to pick the cheaper option of the two depend-
ing upon the shape and format of the training data.
Default: ‘auto’

• <store cv values>, boolean, is a flag indicating if the cross-validation values corre-
sponding to each alpha should be stored in the cv values attribute (see below). This flag is
only compatible with cv=None (i.e. using Generalized Cross-Validation).
Default: False

12.3.4.1.27 Linear classifiers (SVM, logistic regression, a.o.) with SGD training

The Linear classifiers (SVM, logistic regression, a.o.) with SGD training implements regu-
larized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is
estimated for each sample at a time and the model is updated along the way with a decreasing
strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the
partial fit method. This implementation works with data represented as dense or sparse arrays of
floating point values for the features. The model it fits can be controlled with the loss parameter; by
default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss
function that shrinks model parameters towards the zero vector using either the squared Euclidean
norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update
crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning
sparse models and achieves online feature selection. In order to use the Linear classifiers (SVM,
logistic regression, a.o.) with SGD training, the user needs to set the sub-node:

<SKLtype>linear model|SGDClassifier</SKLtype>.

In addition to this XML node, several others are available:
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• <loss>, str, ‘hinge,’ ‘log,’ ‘modified huber,’ ‘squared hinge,’ ‘perceptron,’ or a regres-
sion loss: ‘squared loss,’ ‘huber,’ ‘epsilon insensitive,’ or ‘squared epsilon insensitive’,
dictates the loss function to be used. The available options are:

– ‘hinge’ gives a linear SVM.

– ‘log’ loss gives logistic regression, a probabilistic classifier.

– ‘modified huber’ is another smooth loss that brings tolerance to outliers as well as
probability estimates.

– ‘squared hinge’ is like hinge but is quadratically penalized.

– ‘perceptron’ is the linear loss used by the perceptron algorithm.

The other losses are designed for regression but can be useful in classification as well; see
SGDRegressor for a description.
Default: ‘hinge’

• <penalty>, str, ‘l2’ or ‘l1’ or ‘elasticnet’, defines the penalty (aka regularization term) to
be used. ‘l2’ is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might
bring sparsity to the model (feature selection) not achievable with ‘l2.’
Default: ‘l2’

• <alpha>, float, is the constant multiplier for the regularization term.
Default: 0.0001

• <l1 ratio>, float, is the Elastic Net mixing parameter, with 0 ¡= l1 ratio ¡= 1. l1 ratio=0
corresponds to L2 penalty, l1 ratio=1 to L1.
Default: 0.15

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter>, int, optional field, specifies the number of passes over the training data (aka
epochs).
Default: 5

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: False

• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
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• <epsilon>, int, optional field, is the number of CPUs to use to do the OVA (One Versus
All, for multi-class problems) computation. -1 means ‘all CPUs.’
Default: 1

• <learning rate>, string, optional field, specifies the learning rate:

– ‘constant:’ eta = eta0

– ‘optimal:’ eta = 1.0 / (t + t0)

– ‘invscaling:’ eta = eta0 / pow(t, power t)

Default: invscaling

• <eta0>, double, specifies the initial learning rate for the ‘constant’ or ‘invscaling’ sched-
ules. The default value is 0.0 as eta0 is not used by the default schedule ‘optimal.’
Default: 0.0

• <power t>, double, represents the exponent for the inverse scaling learning rate.
Default: 0.5

• <class weight>, dict, class label, is the preset for the class weight fit parameter. Weights
associated with classes. If not given, all classes are assumed to have weight one. The “auto”
mode uses the values of y to automatically adjust weights inversely proportional to class
frequencies.

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.

12.3.4.1.28 Linear model fitted by minimizing a regularized empirical loss with SGD
The Linear model fitted by minimizing a regularized empirical loss with SGD is a model where
SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at
a time and the model is updated along the way with a decreasing strength schedule (aka learning
rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards
the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combina-
tion of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer,
the update is truncated to 0.0 to allow for learning sparse models and achieving online feature
selection. This implementation works with data represented as dense numpy arrays of floating
point values for the features. In order to use the Linear model fitted by minimizing a regularized
empirical loss with SGD, the user needs to set the sub-node:

<SKLtype>linear model|FW NAME</SKLtype>.

In addition to this XML node, several others are available:
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• <loss>, str, ‘squared loss,’ ‘huber,’ ‘epsilon insensitive,’ or ‘squared epsilon insensitive’,
specifies the loss function to be used. Defaults to ‘squared loss’ which refers to the ordinary
least squares fit. ‘huber’ modifies ‘squared loss’ to focus less on getting outliers correct by
switching from squared to linear loss past a distance of epsilon. ‘epsilon insensitive’ ig-
nores errors less than epsilon and is linear past that; this is the loss function used in SVR.
‘squared epsilon insensitive’ is the same but becomes squared loss past a tolerance of ep-
silon.
Default: ‘squared loss’

• <penalty>, str, ‘l2’ or ‘l1’ or ‘elasticnet’, sets the penalty (aka regularization term) to
be used. Defaults to ‘l2’ which is the standard regularizer for linear SVM models. ‘l1’ and
‘elasticnet’ might bring sparsity to the model (feature selection) not achievable with ‘l2’.
Default: ‘l2’

• <alpha>, float, Constant that multiplies the regularization term. Defaults to 0.0001

• <l1 ratio>, float, is the Elastic Net mixing parameter, with 0 ≤ l1 ratio ≤ 1. l1 ratio=0
corresponds to L2 penalty, l1 ratio=1 to L1.
Default: 0.15

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter>, int, optional field, specifies the number of passes over the training data (aka
epochs).
Default: 5

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: False

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

• <epsilon>, float, sets the epsilon in the epsilon-insensitive loss functions; only if loss is
‘huber,’ ‘epsilon insensitive,’ or ‘squared epsilon insensitive.’ For ‘huber’, determines the
threshold at which it becomes less important to get the prediction exactly right. For epsilon-
insensitive, any differences between the current prediction and the correct label are ignored
if they are less than this threshold.

• <learning rate>, string, optional field, Learning rate:
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– constant: eta = eta0

– optimal: eta = 1.0/(t+t0)

– invscaling: eta= eta0 / pow(t, power t)

Default: invscaling

• <eta0>, double, specifies the initial learning rate.
Default: 0.01

• <power t>, double, optional field, specifies the exponent for inverse scaling learning rate.

Default: 0.25

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.

12.3.4.1.29 Compute Least Angle Regression or Lasso path using LARS algorithm
The Compute Least Angle Regression or Lasso path using LARS algorithm is a regressor where
the optimization objective for the case method=‘lasso’ is: (1/(2 ∗ n samples)) ∗ ||y − Xw||22 +
alpha ∗ ||w||1 in the case of method=’lars’, the objective function is only known in the form of an
implicit equation. In order to use the Compute Least Angle Regression or Lasso path using LARS
algorithm regressor, the user needs to set the sub-node:

<SKLtype>linear model|lars path</SKLtype>.

In addition to this XML node, several others are available:

• <X>, array, shape: (n samples,n features), is the input data.

• <y>, array, shape: (n samples), is the set of input targets.

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 500

• <gram>, None, ‘auto’, array, shape: (n features, n features), optional, Precomputed
Gram matrix (X’ * X), if ‘auto’, the Gram matrix is precomputed from the given X, if there
are more samples than features.

• <alpha min>, float, optional field, sets the minimum correlation along the path. It corre-
sponds to the regularization parameter alpha parameter in the Lasso.
Default: 0

141



• <method>, ‘lar’, ‘lasso’, optional, specifies the returned model. Select ‘lar’ for Least
Angle Regression, ‘lasso’ for the Lasso.
Default: ‘lar’

• <eps>, float, optional, sets the machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned systems.
Default: “np.finfo(np.float).eps”

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

12.3.4.1.30 Compute Lasso path with coordinate descent
The Compute Lasso path with coordinate descent is a regressor where the Lasso optimization
function varies for mono and multi-outputs. For mono-output tasks it is: (1/(2 ∗ n samples)) ∗
||y−Xw||22 + alpha ∗ ||w||1 For multi-output tasks it is: (1/(2 ∗n samples)) ∗ ||Y −XW ||2F ro+

alpha ∗ ||W ||21 Where: ||W ||21 =
∑

i

√∑
j w

2
ij i.e. the sum of norm of each row. In order to

use the Compute Lasso path with coordinate descent regressor, the user needs to set the sub-node:

<SKLtype>linear model|lasso path</SKLtype>.

In addition to this XML node, several others are available:

• <X>, array-like, sparse matrix, shape (n samples, n features), represents the training data.
Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is
mono-output then X can be sparse.

• <y>, ndarray, shape = (n samples,), or (n samples, n outputs), represents the target values.

• <eps>, float, optional field, specifies the length of the path. eps=1e-3 means that alpha min
/ alpha max = 1e-3.

• <n alphas>, int, optional field, is the number of alphas along the regularization path.

• <alphas>, ndarray, optional field, lists the alphas where the models will be computed. If
None, alphas are set automatically.

• <precompute>, True — False — ‘auto’ — array-like, decides whether to use a precom-
puted Gram matrix to speed up calculations or not. If set to ‘auto,’ RAVEN will decide. The
Gram matrix can also be passed as argument.

• <Xy>, array-like, optional field, Xy = np.dot(X.T, y) that can be precomputed. It is useful
only when the Gram matrix is precomputed.

• <copy X>, boolean, optional field, if True, X will be copied; else, it may be overwritten.
Default: True
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• <coef init>, array, shape (n features, ) — None, is the initial set of values of the coef-
ficients.

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

12.3.4.1.31 Stability path based on randomized Lasso estimates In order to use the
Stability path based on randomized Lasso estimates regressor, the user needs to set the sub-node:

<SKLtype>linear model|lasso stability path</SKLtype>.

In addition to this XML node, several others are available:

• <X>, array-like, shape = [n samples, n features], represents the training data.

• <y>, array-like, shape = [n samples], represents the target values.

• <scaling>, float, optional, default=0.5,sets the alpha parameter used to randomly scale
the features. Should be between 0 and 1.

• <random state>, integer or numpy.random.RandomState, optional, sets the generator
used to randomize the design.

• <n resampling>, int, optional, sets the number of randomized models.
Default: 200

• <n grid>, int, optional, specifies the number of grid points. The path is linearly reinterpo-
lated on a grid between 0 and 1 before computing the scores.
Default: 100

• <sample fraction>, float, optional, determines the fraction of samples to be used in
each randomized design. Should be between 0 and 1. If 1, all samples are used.
Default: 0.75

• <eps>, float, optional field, is the smallest value of alpha / alpha max considered.

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.

12.3.4.1.32 Gram Orthogonal Matching Pursuit (OMP)
The Gram OMP solves n targets Orthogonal Matching Pursuit problems using only the Gram
matrix, X.T * X, and the product, X.T * y. In order to use the Gram OMP regressor, the user
needs to set the sub-node:

<SKLtype>linear model|orthogonal mp gram</SKLtype>.

In addition to this XML node, several others are available:

143



• <Gram>, array, shape (n features,n features), contains the Gram matrix of the input data:
X.T * X

• <Xy>, array, shape (n features,) or (n features, n targets), specifies the input targets mul-
tiplied by X: X.T * y.

• <n nonzero coefs>, int, sets the desired number of non-zero entries in the solution. If
None this value is set to 10% of n features.
Default: None

• <tol>, float, sets the maximum norm of the residual. If not None, overrides n nonzero coefs.

• <norms squared>, array-like, shape(n targets),

12.3.4.2 Support Vector Machines

In machine learning, Support Vector Machines (SVMs, also support vector networks) are super-
vised learning models with associated learning algorithms that analyze data and recognize patterns,
used for classification and regression analysis. Given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that assigns new
examples into one category or the other, making it a non-probabilistic binary linear classifier. An
SVM model is a representation of the examples as points in space, mapped so that the examples
of the separate categories are divided by a clear gap that is as wide as possible. New examples are
then mapped into that same space and predicted to belong to a category based on which side of the
gap they fall on. In addition to performing linear classification, SVMs can efficiently perform a
non-linear classification using what is called the kernel trick, implicitly mapping their inputs into
high-dimensional feature spaces. In the following, all the SVM models available in RAVEN are
reported.

12.3.4.2.1 Linear Support Vector Classifier
The Linear Support Vector Classifier is similar to SVC with parameter kernel=‘linear’, but imple-
mented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties
and loss functions and should scale better (to large numbers of samples). This class supports both
dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme.
In order to use the Linear Support Vector Classifier, the user needs to set the sub-node:

<SKLtype>svm|LinearSVC</SKLtype>.

In addition to this XML node, several others are available:

• <C>, boolean, optional field, sets the penalty parameter C of the error term.
Default: 1.0
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• <loss>, string, ‘l1’ or ‘l2’, specifies the loss function. ‘l1’ is the hinge loss (standard
SVM) while ‘l2’ is the squared hinge loss.
Default: ‘l2’

• <penalty>, string, ‘l1’ or ‘l2’, specifies the norm used in the penalization. The ‘l2’
penalty is the standard used in SVC. The ‘l1’ leads to coef vectors that are sparse.
Default: ‘l2’

• <dual>, boolean, selects the algorithm to either solve the dual or primal optimization prob-
lem. Prefer dual=False when n samples ¿ n features.
Default: True

• <tol>, float, optional field, specifies the tolerance for stopping criteria.

• <multi class>, string, ‘ovr’ or ‘crammer singer’, Determines the multi-class strategy
if y contains more than two classes. ovr trains n classes one-vs-rest classifiers, while cram-
mer singer optimizes a joint objective over all classes. While crammer singer is interesting
from a theoretical perspective as it is consistent, it is seldom used in practice and rarely leads
to better accuracy and is more expensive to compute. If crammer singer is chosen, the op-
tions loss, penalty and dual will be ignored.
Default: ‘ovr’

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <intercept scaling>, float, optional field, when True, the instance vector x becomes
[x,self.intercept scaling], i.e. a “synthetic” feature with constant value equals to intercept scaling
is appended to the instance vector. The intercept becomes intercept scaling * synthetic fea-
ture weight. Note: The synthetic feature weight is subject to l1/l2 regularization as are all
other features. To lessen the effect of regularization on the synthetic feature weight (and
therefore on the intercept) intercept scaling has to be increased.
Default: 1

• <class weight>, dict, ‘auto’, optional, sets the parameter C of class i to class weight[i]*C
for SVC. If not given, all classes are assumed to have weight one. The ‘auto’ mode uses the
values of y to automatically adjust weights inversely proportional to class frequencies.

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Note: This setting takes advantage of a per-process runtime setting in liblinear that, if en-

abled, may not work properly in a multithreaded context.

• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None
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12.3.4.2.2 C-Support Vector Classification
The C-Support Vector Classification is a based on libsvm. The fit time complexity is more than
quadratic with the number of samples which makes it hard to scale to datasets with more than a
couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme.
In order to use the C-Support Vector Classifier, the user needs to set the sub-node:

<SKLtype>svm|SVC</SKLtype>.

In addition to this XML node, several others are available:

• <C>, boolean, optional field, sets the penalty parameter C of the error term.
Default: 1.0

• <kernel>, string, optional, specifies the kernel type to be used in the algorithm. It must
be one of:

– ‘linear’

– ‘poly’

– ‘rbf’

– ‘sigmoid’

– ‘precomputed’

– a callable object

If a callable is given it is used to precompute the kernel matrix.
Default: ‘rbf’

• <degree>, int, optional field, determines the degree of the polynomial kernel function
(‘poly’). Ignored by all other kernels.
Default: 3.0

• <gamma>, float, optional field, sets the kernel coefficient for the kernels ‘rbf,’ ‘poly,’ and
‘sigmoid.’ If gamma is 0.0 then 1/n features will be used instead.
Default: 0.0

• <coef0>, float, optional field, is an independent term in kernel function. It is only signifi-
cant in ‘poly’ and ‘sigmoid.’
Default: 0.0

• <probability>, boolean, optional field, determines whether or not to enable probability
estimates. This must be enabled prior to calling fit, and will slow down that method.
Default: False

• <shrinking>, boolean, optional field, determines whether or not to use the shrinking
heuristic.
Default: True
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• <tol>, float, optional field, specifies the tolerance for stopping criteria.

• <cache size>, float, optional field, specifies the size of the kernel cache (in MB).

• <class weight>, dict, ‘auto’, optional, sets the parameter C of class i to class weight[i]*C
for SVC. If not given, all classes are assumed to have weight one. The ‘auto’ mode uses the
values of y to automatically adjust weights inversely proportional to class frequencies.

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False Note: This setting takes advantage of a per-process runtime setting in libsvm
that, if enabled, may not work properly in a multithreaded context.

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: -1

• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None

12.3.4.2.3 Nu-Support Vector Classification

The Nu-Support Vector Classification is similar to SVC but uses a parameter to control the
number of support vectors. The implementation is based on libsvm. In order to use the Nu-
Support Vector Classifier, the user needs to set the sub-node:

<SKLtype>svm|NuSVC</SKLtype>.

In addition to this XML node, several others are available:

• <nu>, float, optional field, is an upper bound on the fraction of training errors and a lower
bound of the fraction of support vectors. Should be in the interval (0, 1].
Default: 0.5

• <kernel>, string, optional, specifies the kernel type to be used in the algorithm. It must
be one of:

– ‘linear’

– ‘poly’

– ‘rbf’

– ‘sigmoid’

– ‘precomputed’

– a callable object
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If a callable is given it is used to precompute the kernel matrix.
Default: ‘rbf’

• <degree>, int, optional field, determines the degree of the polynomial kernel function
(‘poly’). Ignored by all other kernels.
Default: 3.0

• <gamma>, float, optional field, sets the kernel coefficient for the kernels ‘rbf,’ ‘poly,’ and
‘sigmoid.’ If gamma is 0.0 then 1/n features will be used instead.
Default: 0.0

• <coef0>, float, optional field, is an independent term in kernel function. It is only signifi-
cant in ‘poly’ and ‘sigmoid.’
Default: 0.0

• <probability>, boolean, optional field, determines whether or not to enable probability
estimates. This must be enabled prior to calling fit, and will slow down that method.
Default: False

• <shrinking>, boolean, optional field, determines whether or not to use the shrinking
heuristic.
Default: True

• <tol>, float, optional field, specifies the tolerance for stopping criteria.

• <cache size>, float, optional field, specifies the size of the kernel cache (in MB).

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False Note: This setting takes advantage of a per-process runtime setting in libsvm
that, if enabled, may not work properly in a multithreaded context.

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: -1

• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None

12.3.4.2.4 Support Vector Regression
The Support Vector Regression is an epsilon-Support Vector Regression. The free parameters in
this model are C and epsilon. The implementations is a based on libsvm. In order to use the
Support Vector Regressor, the user needs to set the sub-node:

<SKLtype>svm|SVR</SKLtype>.

In addition to this XML node, several others are available:
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• <C>, boolean, optional field, sets the penalty parameter C of the error term.
Default: 1.0

• <epsilon>, float, optional field, specifies the epsilon-tube within which no penalty is
associated in the training loss function with points predicted within a distance epsilon from
the actual value.
Default: 0.1

• <kernel>, string, optional, specifies the kernel type to be used in the algorithm. It must
be one of:

– ‘linear’

– ‘poly’

– ‘rbf’

– ‘sigmoid’

– ‘precomputed’

– a callable object

If a callable is given it is used to precompute the kernel matrix.
Default: ‘rbf’

• <degree>, int, optional field, determines the degree of the polynomial kernel function
(‘poly’). Ignored by all other kernels.
Default: 3.0

• <gamma>, float, optional field, sets the kernel coefficient for the kernels ‘rbf,’ ‘poly,’ and
‘sigmoid.’ If gamma is 0.0 then 1/n features will be used instead.
Default: 0.0

• <coef0>, float, optional field, is an independent term in kernel function. It is only signifi-
cant in ‘poly’ and ‘sigmoid.’
Default: 0.0

• <probability>, boolean, optional field, determines whether or not to enable probability
estimates. This must be enabled prior to calling fit, and will slow down that method.
Default: False

• <shrinking>, boolean, optional field, determines whether or not to use the shrinking
heuristic.
Default: True

• <tol>, float, optional field, specifies the tolerance for stopping criteria.

• <cache size>, float, optional field, specifies the size of the kernel cache (in MB).
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• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False Note: This setting takes advantage of a per-process runtime setting in libsvm
that, if enabled, may not work properly in a multithreaded context.

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: -1

• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None

12.3.4.3 Multi Class

Multiclass classification means a classification task with more than two classes; e.g., classify a set
of images of fruits which may be oranges, apples, or pears. Multiclass classification makes the
assumption that each sample is assigned to one and only one label: a fruit can be either an apple
or a pear but not both at the same time. In the following, all the multi-class models available in
RAVEN are reported.

12.3.4.3.1 One-vs-the-rest (OvR) multiclass/multilabel strategy

The One-vs-the-rest (OvR) multiclass/multilabel strategy, also known as one-vs-all, consists in
fitting one classifier per class. For each classifier, the class is fitted against all the other classes.
In addition to its computational efficiency (only n classes classifiers are needed), one advantage of
this approach is its interpretability. Since each class is represented by one and one classifier only,
it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is
the most commonly used strategy and is a fair default choice.

In order to use the One-vs-the-rest (OvR) multiclass/multilabel classifier, the user needs to set
the sub-node:

<SKLtype>multiClass|OneVsRestClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <estimator>, boolean, required field, An estimator object implementing fit and one of
decision function or predict proba. This XML node needs to contain the following attribute:

– estimatorType, required string attribute, this attribute is another reduced order
mode type that needs to be used for the construction of the multi-class algorithms.
Each sub-sequential node depends on the chosen ROM.
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12.3.4.3.2 One-vs-one multiclass strategy

The One-vs-one multiclass strategy consists in fitting one classifier per class pair. At predic-
tion time, the class which received the most votes is selected. Since it requires to fit n classes
* (n classes - 1) / 2 classifiers, this method is usually slower than one-vs-the-rest, due to its
O(n classes2̂) complexity. However, this method may be advantageous for algorithms such as
kernel algorithms which do not scale well with n samples. This is because each individual learn-
ing problem only involves a small subset of the data whereas, with one-vs-the-rest, the complete
dataset is used n classes times.

In order to use the One-vs-one multiclass classifier, the user needs to set the sub-node:

<SKLtype>multiClass|OneVsOneClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <estimator>, boolean, required field, An estimator object implementing fit and one of
decision function or predict proba. This XML node needs to contain the following attribute:

– estimatorType, required string attribute, this attribute is another reduced order
mode type that needs to be used for the construction of the multi-class algorithms.
Each sub-sequential node depends on the chosen ROM.

12.3.4.3.3 Error-Correcting Output-Code multiclass strategy
The Error-Correcting Output-Code multiclass strategy consists in representing each class with a
binary code (an array of 0s and 1s). At fitting time, one binary classifier per bit in the code book
is fitted. At prediction time, the classifiers are used to project new points in the class space and the
class closest to the points is chosen. The main advantage of these strategies is that the number of
classifiers used can be controlled by the user, either for compressing the model (0 < code size <
1) or for making the model more robust to errors (code size > 1).

In order to use the Error-Correcting Output-Code multiclass classifier, the user needs to set the
sub-node:

<SKLtype>multiClass|OutputCodeClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <estimator>, boolean, required field, An estimator object implementing fit and one of
decision function or predict proba. This XML node needs to contain the following attribute:

– estimatorType, required string attribute, this attribute is another reduced order
mode type that needs to be used for the construction of the multi-class algorithms.
Each sub-sequential node depends on the chosen ROM.
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• <code size>, float, required field, represents the percentage of the number of classes to
be used to create the code book. A number between 0 and 1 will require fewer classifiers than
one-vs-the-rest. A number greater than 1 will require more classifiers than one-vs-the-rest.

12.3.4.4 Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem
with the “naive” assumption of independence between every pair of features. Given a class variable
y and a dependent feature vector x 1 through x n, Bayes’ theorem states the following relationship:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . xn | y)

P (x1, . . . , xn)
(3)

Using the naive independence assumption that

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y), (4)

for all i, this relationship is simplified to

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
(5)

Since P (x1, . . . , xn) is constant given the input, we can use the following classification rule:

P (y | x1, . . . , xn) ∝ P (y)
n∏

i=1

P (xi | y) ⇓ (6)

ŷ = arg max
y
P (y)

n∏
i=1

P (xi | y), (7)

and we can use Maximum A Posteriori (MAP) estimation to estimate P (y) and P (xi | y); the
former is then the relative frequency of class y in the training set. The different naive Bayes
classifiers differ mainly by the assumptions they make regarding the distribution of P (xi | y).

In spite of their apparently over-simplified assumptions, naive Bayes classifiers have worked
quite well in many real-world situations, famously document classification and spam filtering.
They require a small amount of training data to estimate the necessary parameters. (For theoret-
ical reasons why naive Bayes works well, and on which types of data it does, see the references
below.) Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated
methods. The decoupling of the class conditional feature distributions means that each distribution
can be independently estimated as a one dimensional distribution. This in turn helps to alleviate
problems stemming from the curse of dimensionality.

On the flip side, although naive Bayes is known as a decent classifier, it is known to be a bad
estimator, so the probability outputs from predict proba are not to be taken too seriously. In the
following, all the Naive Bayes available in RAVEN are reported.
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12.3.4.4.1 Gaussian Naive Bayes
The Gaussian Naive Bayes strategy implements the Gaussian Naive Bayes algorithm for classifi-
cation. The likelihood of the features is assumed to be Gaussian:

P (xi | y) =
1√

2πσ2
y

exp

(
−(xi − µy)

2

2σ2
y

)
(8)

The parameters σy and µy are estimated using maximum likelihood.

In order to use the Gaussian Naive Bayes strategy, the user needs to set the sub-node:

<SKLtype>naiveBayes|GaussianNB</SKLtype>.

There are no additional sub-nodes available for this method.

12.3.4.4.2 Multinomial Naive Bayes
The Multinomial Naive Bayes implements the naive Bayes algorithm for multinomially distributed
data, and is one of the two classic naive Bayes variants used in text classification (where the data is
typically represented as word vector counts, although tf-idf vectors are also known to work well in
practice). The distribution is parametrized by vectors θy = (θy1, . . . , θyn) for each class y, where n
is the number of features (in text classification, the size of the vocabulary) and θyi is the probability
P (xi | y) of feature i appearing in a sample belonging to class y. The parameters θy are estimated
by a smoothed version of maximum likelihood, i.e. relative frequency counting:

θ̂yi =
Nyi + α

Ny + αn
(9)

whereNyi =
∑

x∈T xi is the number of times feature i appears in a sample of class y in the training
set T, and Ny =

∑|T |
i=1Nyi is the total count of all features for class y. The smoothing priors

α ≥ 0 account for features not present in the learning samples and prevents zero probabilities in
further computations. Setting α = 1 is called Laplace smoothing, while α < 1 is called Lidstone
smoothing. In order to use the Multinomial Naive Bayes strategy, the user needs to set the sub-
node:

<SKLtype>naiveBayes|MultinomialNB</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, specifies an additive (Laplace/Lidstone) smoothing param-
eter (0 for no smoothing).
Default: 1.0

• <fit prior>, boolean, required field, determines whether to learn class prior probabili-
ties or not. If false, a uniform prior will be used.
Default: False
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• <class prior>, array-like float (n classes), optional field, specifies prior probabilities
of the classes. If specified, the priors are not adjusted according to the data.
Default: None

12.3.4.4.3 Bernoulli Naive Bayes
The Bernoulli Naive Bayes implements the naive Bayes training and classification algorithms for
data that is distributed according to multivariate Bernoulli distributions; i.e., there may be multiple
features but each one is assumed to be a binary-valued (Bernoulli, boolean) variable. Therefore,
this class requires samples to be represented as binary-valued feature vectors; if handed any other
kind of data, a Bernoulli Naive Bayes instance may binarize its input (depending on the binarize
parameter). The decision rule for Bernoulli naive Bayes is based on

P (xi | y) = P (i | y)xi + (1− P (i | y))(1− xi) (10)

which differs from multinomial NB’s rule in that it explicitly penalizes the non-occurrence of a
feature i that is an indicator for class y, where the multinomial variant would simply ignore a
non-occurring feature. In the case of text classification, word occurrence vectors (rather than word
count vectors) may be used to train and use this classifier. Bernoulli Naive Bayes might perform
better on some datasets, especially those with shorter documents. It is advisable to evaluate both
models, if time permits. In order to use the Bernoulli Naive Bayes strategy, the user needs to set
the sub-node:

<SKLtype>naiveBayes|BernoulliNB</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, specifies an additive (Laplace/Lidstone) smoothing param-
eter (0 for no smoothing).
Default: 1.0

• <binarize>, float, optional field, Threshold for binarizing (mapping to booleans) of sam-
ple features. If None, input is presumed to already consist of binary vectors.
Default: None

• <fit prior>, boolean, required field, determines whether to learn class prior probabili-
ties or not. If false, a uniform prior will be used.
Default: False

• <class prior>, array-like float (n classes), optional field, specifies prior probabilities
of the classes. If specified, the priors are not adjusted according to the data.
Default: None
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12.3.4.5 Neighbors

The Neighbors class provides functionality for unsupervised and supervised neighbor-based learn-
ing methods. The unsupervised nearest neighbors method is the foundation of many other learning
methods, notably manifold learning and spectral clustering. Supervised neighbors-based learn-
ing comes in two flavors: classification for data with discrete labels, and regression for data with
continuous labels.

The principle behind nearest neighbor methods is to find a predefined number of training sam-
ples closest in distance to the new point, and predict the label from these. The number of samples
can be a user-defined constant (k-nearest neighbor learning), or vary based on the local density
of points (radius-based neighbor learning). The distance can, in general, be any metric measure:
standard Euclidean distance is the most common choice. Neighbor-based methods are known as
non-generalizing machine learning methods, since they simply “remember” all of its training data
(possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree.).

In the following, all the Neighbors’ models available in RAVEN are reported.

12.3.4.5.1 Nearest Neighbors
The Nearest Neighbors implements unsupervised nearest neighbors learning. It acts as a uniform
interface to three different nearest neighbors algorithms: BallTree, KDTree, and a brute-force
algorithm. In order to use the Nearest Neighbors strategy, the user needs to set the sub-node:

<SKLtype>neighbors|NearestNeighbors</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, specifies the number of neighbors to use by de-
fault for ‘k neighbors’ queries.
Default: 5

• <radius>, float, optional field, specifies the range of parameter space to use by default for
‘radius neighbors’ queries.
Default: 1.0

• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.

– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.
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Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

12.3.4.5.2 K Neighbors Classifier
The K Neighbors Classifier is a type of instance-based learning or non-generalizing learning: it
does not attempt to construct a general internal model, but simply stores instances of the training
data. Classification is computed from a simple majority vote of the nearest neighbors of each
point: a query point is assigned the data class which has the most representatives within the nearest
neighbors of the point. It implements learning based on the k nearest neighbors of each query point,
where k is an integer value specified by the user.

In order to use the K Neighbors Classifier, the user needs to set the sub-node:

<SKLtype>neighbors|KNeighborsClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, specifies the number of neighbors to use by de-
fault for ‘k neighbors’ queries.
Default: 5

• <weights>, string, optional field, specifies the weight function used in prediction. Possi-
ble values:

– uniform : uniform weights. All points in each neighborhood are weighted equally;

– distance : weight points by the inverse of their distance. In this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

Default: uniform

• <radius>, float, optional field, specifies the range of parameter space to use by default for
‘radius neighbors’ queries.
Default: 1.0
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• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.

– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <metric>, string, optional field, sets the distance metric to use for the tree. The Minkowski
metric with p=2 is equivalent to the standard Euclidean metric.
Default: minkowski

• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

12.3.4.5.3 Radius Neighbors Classifier
The Radius Neighbors Classifier is a type of instance-based learning or non-generalizing learning:
it does not attempt to construct a general internal model, but simply stores instances of the training
data. Classification is computed from a simple majority vote of the nearest neighbors of each
point: a query point is assigned the data class which has the most representatives within the nearest
neighbors of the point. It implements learning based on the number of neighbors within a fixed
radius r of each training point, where r is a floating-point value specified by the user.

In order to use the Radius Neighbors Classifier, the user needs to set the sub-node:

<SKLtype>neighbors|RadiusNeighbors</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, specifies the number of neighbors to use by de-
fault for ‘k neighbors’ queries.
Default: 5
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• <weights>, string, optional field, specifies the weight function used in prediction. Possi-
ble values:

– uniform : uniform weights. All points in each neighborhood are weighted equally;

– distance : weight points by the inverse of their distance. In this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

Default: uniform

• <radius>, float, optional field, specifies the range of parameter space to use by default for
‘radius neighbors’ queries.
Default: 1.0

• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.

– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <metric>, string, optional field, sets the distance metric to use for the tree. The Minkowski
metric with p=2 is equivalent to the standard Euclidean metric.
Default: minkowski

• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

• <outlier label>, integer, optional field, is a label, which is given for outlier samples
(samples with no neighbors on a given radius). If set to None, ValueError is raised, when an
outlier is detected.
Default: None
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12.3.4.5.4 K Neighbors Regressor

The K Neighbors Regressor can be used in cases where the data labels are continuous rather
than discrete variables. The label assigned to a query point is computed based on the mean of the
labels of its nearest neighbors. It implements learning based on the k nearest neighbors of each
query point, where k is an integer value specified by the user.

In order to use the K Neighbors Regressor, the user needs to set the sub-node:

<SKLtype>neighbors|KNeighborsRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, specifies the number of neighbors to use by de-
fault for ‘k neighbors’ queries.
Default: 5

• <weights>, string, optional field, specifies the weight function used in prediction. Possi-
ble values:

– uniform : uniform weights. All points in each neighborhood are weighted equally;

– distance : weight points by the inverse of their distance. In this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

Default: uniform

• <radius>, float, optional field, specifies the range of parameter space to use by default for
‘radius neighbors’ queries.
Default: 1.0

• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.

– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <metric>, string, optional field, sets the distance metric to use for the tree. The Minkowski
metric with p=2 is equivalent to the standard Euclidean metric.
Default: minkowski
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• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

12.3.4.5.5 Radius Neighbors Regressor

The Radius Neighbors Regressor can be used in cases where the data labels are continuous
rather than discrete variables. The label assigned to a query point is computed based on the mean
of the labels of its nearest neighbors. It implements learning based on the neighbors within a fixed
radius r of the query point, where r is a floating-point value specified by the user.

In order to use the Radius Neighbors Regressor, the user needs to set the sub-node:

<SKLtype>neighbors|RadiusNeighborsRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, specifies the number of neighbors to use by de-
fault for ‘k neighbors’ queries.
Default: 5

• <weights>, string, optional field, specifies the weight function used in prediction. Possi-
ble values:

– uniform : uniform weights. All points in each neighborhood are weighted equally;

– distance : weight points by the inverse of their distance. In this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

Default: uniform

• <radius>, float, optional field, specifies the range of parameter space to use by default for
‘radius neighbors’ queries.
Default: 1.0

• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.
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– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <metric>, string, optional field, sets the distance metric to use for the tree. The Minkowski
metric with p=2 is equivalent to the standard Euclidean metric.
Default: minkowski

• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

• <outlier label>, integer, optional field, is a label, which is given for outlier samples
(samples with no neighbors on a given radius). If set to None, ValueError is raised, when an
outlier is detected.
Default: None

12.3.4.5.6 Nearest Centroid Classifier

The Nearest Centroid classifier is a simple algorithm that represents each class by the centroid
of its members. It also has no parameters to choose, making it a good baseline classifier. It does,
however, suffer on non-convex classes, as well as when classes have drastically different variances,
as equal variance in all dimensions is assumed.

In order to use the Nearest Centroid Classifier, the user needs to set the sub-node:

<SKLtype>neighbors|NearestCentroid</SKLtype>.

In addition to this XML node, several others are available:

• <shrink threshold>, float, optional field, defines the threshold for shrinking centroids
to remove features.
Default: None
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12.3.4.6 Quadratic Discriminant Analysis

The Quadratic Discriminant Analysis is a classifier with a quadratic decision boundary, generated
by fitting class conditional densities to the data and using Bayes’ rule. The model fits a Gaussian
density to each class.

In order to use the Quadratic Discriminant Analysis Classifier, the user needs to set the sub-
node:

<SKLtype>qda|QDA</SKLtype>.

In addition to this XML node, several others are available:

• <priors>, array-like (n classes), optional field, specifies the priors on the classes.
Default: None

• <reg param>, float, optional field, regularizes the covariance estimate as (1-reg param)*Sigma
+ reg param*Identity(n features).
Default: 0.0

12.3.4.7 Tree

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and
regression. The goal is to create a model that predicts the value of a target variable by learning
simple decision rules inferred from the data features.

• Some advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualized.

• Requires little data preparation. Other techniques often require data normalization, dummy
variables need to be created and blank values to be removed. Note however, that this module
does not support missing values.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points
used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are usually specialized
in analyzing datasets that have only one type of variable.

• Able to handle multi-output problems.

162



• Uses a white box model. If a given situation is observable in a model, the explanation for
the condition is easily explained by boolean logic. By contrast, in a black box model (e.g.,
in an artificial neural network), results may be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible to account for the
reliability of the model.

• Performs well even if its assumptions are somewhat violated by the true model from which
the data were generated.

The disadvantages of decision trees include:

• Decision-tree learners can create over-complex trees that do not generalise the data well.
This is called overfitting. Mechanisms such as pruning (not currently supported), setting the
minimum number of samples required at a leaf node or setting the maximum depth of the
tree are necessary to avoid this problem.

• Decision trees can be unstable because small variations in the data might result in a com-
pletely different tree being generated. This problem is mitigated by using decision trees
within an ensemble.

• The problem of learning an optimal decision tree is known to be NP-complete under several
aspects of optimality and even for simple concepts. Consequently, practical decision-tree
learning algorithms are based on heuristic algorithms such as the greedy algorithm where
locally optimal decisions are made at each node. Such algorithms cannot guarantee to return
the globally optimal decision tree. This can be mitigated by training multiple trees in an
ensemble learner, where the features and samples are randomly sampled with replacement.

• There are concepts that are hard to learn because decision trees do not express them easily,
such as XOR, parity or multiplexer problems.

• Decision tree learners create biased trees if some classes dominate. It is therefore recom-
mended to balance the dataset prior to fitting with the decision tree.

In the following, all the linear models available in RAVEN are reported.

12.3.4.7.1 Decision Tree Classifier
The Decision Tree Classifier is a classifier that is based on the decision tree logic.

In order to use the Decision Tree Classifier, the user needs to set the sub-node:

<SKLtype>tree|DecisionTreeClassifier</SKLtype>.

In addition to this XML node, several others are available:
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• <criterion>, string, optional field, specifies the function used to measure the quality of
a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information
gain.
Default: gini

• <splitter>, string, optional field, specifies the strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.
Default: best

• <max features>, int, float or string, optional field, sets the number of features to con-
sider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a percentage and int(max features * n features) features
are considered at each split.

– If “auto,” then max features=sqrt(n features).

– If “sqrt,” then max features=sqrt(n features).

– If “log2,” then max features=log2(n features).

– If None, then max features=n features.

Note: The search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max features features.
Default: None

• <max depth>, integer, optional field, determines the maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples. Ignored if max samples leaf is not None.
Default: None

• <min samples split>, integer, optional field, sets the minimum number of samples
required to split an internal node.
Default: 2

• <min samples leaf>, integer, optional field, sets the minimum number of samples re-
quired to be at a leaf node.
Default: 1

• <max leaf nodes>, integer, optional field, grow a tree with max leaf nodes in best-first
fashion. Best nodes are defined by relative reduction in impurity. If None then unlimited
number of leaf nodes. If not None then max depth will be ignored.
Default: None
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12.3.4.7.2 Decision Tree Regressor
The Decision Tree Regressor is a Regressor that is based on the decision tree logic. In order to
use the Decision Tree Regressor, the user needs to set the sub-node:

<SKLtype>tree|DecisionTreeRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <criterion>, string, optional field, specifies the function used to measure the quality of
a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information
gain.
Default: gini

• <splitter>, string, optional field, specifies the strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.
Default: best

• <max features>, int, float or string, optional field, sets the number of features to con-
sider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a percentage and int(max features * n features) features
are considered at each split.

– If “auto,” then max features=sqrt(n features).

– If “sqrt,” then max features=sqrt(n features).

– If “log2,” then max features=log2(n features).

– If None, then max features=n features.

Note: The search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max features features.
Default: None

• <max depth>, integer, optional field, determines the maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples. Ignored if max samples leaf is not None.
Default: None

• <min samples split>, integer, optional field, sets the minimum number of samples
required to split an internal node.
Default: 2
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• <min samples leaf>, integer, optional field, sets the minimum number of samples re-
quired to be at a leaf node.
Default: 1

• <max leaf nodes>, integer, optional field, grow a tree with max leaf nodes in best-first
fashion. Best nodes are defined by relative reduction in impurity. If None then unlimited
number of leaf nodes. If not None then max depth will be ignored.
Default: None

12.3.4.7.3 Extra Tree Classifier
The Extra Tree Classifier is an extremely randomized tree classifier. Extra-trees differ from classic
decision trees in the way they are built. When looking for the best split to separate the samples of
a node into two groups, random splits are drawn for each of the max features randomly selected
features and the best split among those is chosen. When max features is set 1, this amounts to
building a totally random decision tree.

In order to use the Extra Tree Classifier, the user needs to set the sub-node:

<SKLtype>tree|ExtraTreeClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <criterion>, string, optional field, specifies the function used to measure the quality of
a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information
gain.
Default: gini

• <splitter>, string, optional field, specifies the strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.
Default: best

• <max features>, int, float or string, optional field, sets the number of features to con-
sider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a percentage and int(max features * n features) features
are considered at each split.

– If “auto,” then max features=sqrt(n features).

– If “sqrt,” then max features=sqrt(n features).

– If “log2,” then max features=log2(n features).

– If None, then max features=n features.
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Note: The search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max features features.
Default: None

• <max depth>, integer, optional field, determines the maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples. Ignored if max samples leaf is not None.
Default: None

• <min samples split>, integer, optional field, sets the minimum number of samples
required to split an internal node.
Default: 2

• <min samples leaf>, integer, optional field, sets the minimum number of samples re-
quired to be at a leaf node.
Default: 1

• <max leaf nodes>, integer, optional field, grow a tree with max leaf nodes in best-first
fashion. Best nodes are defined by relative reduction in impurity. If None then unlimited
number of leaf nodes. If not None then max depth will be ignored.
Default: None

12.3.4.7.4 Extra Tree Regressor

The Extra Tree Regressor is an extremely randomized tree regressor. Extra-trees differ from
classic decision trees in the way they are built. When looking for the best split to separate the
samples of a node into two groups, random splits are drawn for each of the max features randomly
selected features and the best split among those is chosen. When max features is set 1, this amounts
to building a totally random decision tree.

In order to use the Extra Tree Regressor, the user needs to set the sub-node:

<SKLtype>tree|ExtraTreeRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <criterion>, string, optional field, specifies the function used to measure the quality of
a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information
gain.
Default: gini

• <splitter>, string, optional field, specifies the strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.
Default: best
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• <max features>, int, float or string, optional field, sets the number of features to con-
sider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a percentage and int(max features * n features) features
are considered at each split.

– If “auto,” then max features=sqrt(n features).

– If “sqrt,” then max features=sqrt(n features).

– If “log2,” then max features=log2(n features).

– If None, then max features=n features.

Note: The search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max features features.
Default: None

• <max depth>, integer, optional field, determines the maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples. Ignored if max samples leaf is not None.
Default: None

• <min samples split>, integer, optional field, sets the minimum number of samples
required to split an internal node.
Default: 2

• <min samples leaf>, integer, optional field, sets the minimum number of samples re-
quired to be at a leaf node.
Default: 1

• <max leaf nodes>, integer, optional field, grow a tree with max leaf nodes in best-first
fashion. Best nodes are defined by relative reduction in impurity. If None then unlimited
number of leaf nodes. If not None then max depth will be ignored.
Default: None

12.3.4.8 Gaussian Process

Gaussian Processes for Machine Learning (GPML) is a generic supervised learning method pri-
marily designed to solve regression problems. The advantages of Gaussian Processes for Machine
Learning are:

• The prediction interpolates the observations (at least for regular correlation models).
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• The prediction is probabilistic (Gaussian) so that one can compute empirical confidence
intervals and exceedance probabilities that might be used to refit (online fitting, adaptive
fitting) the prediction in some region of interest.

• Versatile: different linear regression models and correlation models can be specified. Com-
mon models are provided, but it is also possible to specify custom models provided they are
stationary.

The disadvantages of Gaussian Processes for Machine Learning include:

• It is not sparse. It uses the whole samples/features information to perform the prediction.

• It loses efficiency in high dimensional spaces – namely when the number of features exceeds
a few dozens. It might indeed give poor performance and it loses computational efficiency.

• Classification is only a post-processing, meaning that one first needs to solve a regression
problem by providing the complete scalar float precision output y of the experiment one is
attempting to model.

In order to use the Gaussian Process Regressor, the user needs to set the sub-node:

<SKLtype>GaussianProcess|GaussianProcess</SKLtype>.

In addition to this XML node, several others are available:

• <regr>, string, optional field, is a regression function returning an array of outputs of the
linear regression functional basis. The number of observations n samples should be greater
than the size p of this basis. Available built-in regression models are ‘constant,’ ‘linear,’ and
‘quadratic.’
Default: constant

• <corr>, string, optional field, is a stationary autocorrelation function returning the auto-
correlation between two points x and x′. Default assumes a squared-exponential autocorre-
lation model. Built-in correlation models are ‘absolute exponential,’ ‘squared exponential,’
‘generalized exponential,’ ‘cubic,’ and ‘linear.’
Default: squared exponential

• <beta0>, float, array-like, optional field, specifies the regression weight vector to perform
Ordinary Kriging (OK).
Default: Universal Kriging

• <storage mode>, string, optional field, specifies whether the Cholesky decomposition
of the correlation matrix should be stored in the class (storage mode = ‘full’) or not (stor-
age mode = ‘light’).
Default: full
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• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

• <theta0>, float, array-like, optional field, is an array with shape (n features, ) or (1, ).
This represents the parameters in the autocorrelation model. If thetaL and thetaU are also
specified, theta0 is considered as the starting point for the maximum likelihood estimation
of the best set of parameters.
Default: [1e-1]

• <thetaL>, float, array-like, optional field, is an array with shape matching that defined
by <theta0>. Lower bound on the autocorrelation parameters for maximum likelihood
estimation.
Default: None

• <thetaU>, float, array-like, optional field, is an array with shape matching that defined
by <theta0>. Upper bound on the autocorrelation parameters for maximum likelihood
estimation.
Default: None

• <normalize>, boolean, optional field, if True, the input X and observations y are cen-
tered and reduced w.r.t. means and standard deviations estimated from the n samples obser-
vations provided.
Default: True

• <nugget>, float, optional field,specifies a nugget effect to allow smooth predictions from
noisy data. The nugget is added to the diagonal of the assumed training covariance. In this
way it acts as a Tikhonov regularization in the problem. In the special case of the squared
exponential correlation function, the nugget mathematically represents the variance of the
input values.
Default: 10 * MACHINE EPSILON

• <optimizer>, string, optional field, specifies the optimization algorithm to be used.
Available optimizers are: ’fmin cobyla’, ’Welch’.
Default: fmin cobyla

• <random start>, integer, optional field, sets the number of times the Maximum Likeli-
hood Estimation should be performed from a random starting point. The first MLE always
uses the specified starting point (theta0), the next starting points are picked at random ac-
cording to an exponential distribution (log-uniform on [thetaL, thetaU]).
Default: 1

• <random state>, integer, optional field, is the seed of the internal random number gen-
erator.
Default: random
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Example:

<Simulation>
...
<Models>

...
<ROM name=’aUserDefinedName’ subType=’SciKitLearn’>

<Features>var1,var2,var3</Features>
<Target>result1</Target>
<SKLtype>linear_model|LinearRegression</SKLtype>
<fit_intercept>True</fit_intercept>
<normalize>False</normalize>

</ROM>
...

</Models>
...

</Simulation>

12.4 External Model

As the name suggests, an external model is an entity that is embedded in the RAVEN code at
run time. This object allows the user to create a python module that is going to be treated as a
predefined internal model object. In other words, the External Model is going to be treated by
RAVEN as a normal external Code (e.g. it is going to be called in order to compute an arbitrary
quantity based on arbitrary input).

The specifications of an External Model must be defined within the XML block <ExternalModel>.
This XML node needs to contain the attributes:

• name, required string attribute, user-defined name of this External Model. Note: As with
the other objects, this is the name that can be used to refer to this specific entity from other
input blocks in the XML.

• subType, required string attribute, must be kept empty.

• ModuleToLoad, required string attribute, file name with its absolute or relative path.
Note: If a relative path is specified, it must be relative with respect to where the user runs

the code.

In order to make the RAVEN code aware of the variables the user is going to manipulate/use in
her/his own python Module, the variables need to be specified in the <ExternalModel> input
block. The user needs to input, within this block, only the variables that RAVEN needs to be aware
of (i.e. the variables are going to directly be used by the code) and not the local variables that the
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user does not want to, for example, store in a RAVEN internal object. These variables are specified
within consecutive <variable> blocks:

• <variable>, string, required parameter. In the body of this XML node, the user needs
to specify the name of the variable. This variable needs to match a variable used/defined in
the external python model.

When the external function variables are defined, at run time, RAVEN initializes them and
tracks their values during the simulation. Each variable defined in the <ExternalModel> block
is available in the module (each method implemented) as a python “self.”

In the External Python module, the user can implement all the methods that are needed for the
functionality of the model, but only the following methods, if present, are called by the framework:

• def readMoreXML, OPTIONAL METHOD, can be implemented by the user if the
XML input that belongs to this External Model needs to be extended to contain other in-
formation. The information read needs to be stored in “self” in order to be available to all
the other methods (e.g. if the user needs to add a couple of newer XML nodes with informa-
tion needed by the algorithm implemented in the “run” method).

• def initialize, OPTIONAL METHOD, can implement all the actions need to be per-
formed at the initialization stage.

• def createNewInput, OPTIONAL METHOD, creates a new input with the informa-
tion coming from the RAVEN framework. In this function the user can retrieve the informa-
tion coming from the RAVEN framework, during the employment of a calculation flow, and
use them to construct a new input that is going to be transferred to the “run” method.

• def run, REQUIRED METHOD, is the actual location where the user needs to imple-
ment the model action (e.g. resolution of a set of equations, etc.). This function is going
to receive the Input (or Inputs) generated either by the External Model “createNewInput”
method or the internal RAVEN one.

In the following sub-sections, all the methods are going to be analyzed in detail.

12.4.1 Method: def readMoreXML

As already mentioned, the readMoreXML method can be implemented by the user if the XML
input that belongs to this External Model needs to be extended to contain other information. The
information read needs to be stored in “self” in order to be available to all the other methods (e.g.
if the user needs to add a couple of newer XML nodes with information needed by the algorithm
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implemented in the “run” method). If this method is implemented in the External Model, RAVEN
is going to call it when the node <ExternalModel> is found parsing the XML input file. The
method receives from RAVEN an attribute of type “xml.etree.ElementTree”, containing all the
sub-nodes and attribute of the XML block <ExternalModel>.

Example XML:

<Simulation>
...
<Models>

...
<ExternalModel name=’AnExtModule’ subType=’’

ModuleToLoad=’path_to_external_module’>
<variable>sigma</variable>
<variable>rho</variable>
<variable>outcome</variable>
<!--

here we define other XML nodes RAVEN does not read
automatically.

We need to implement, in the external module
’AnExtModule’ the readMoreXML method

-->
<newNodeWeNeedToRead>

whatNeedsToBeRead
</newNodeWeNeedToRead>

</ExternalModel>
...

</Models>
...

</Simulation>

Corresponding Python function:

def _readMoreXML(self,xmlNode):
# the xmlNode is passed in by RAVEN framework
# <newNodeWeNeedToRead> is unknown (in the RAVEN framework)
# we have to read it on our own
# get the node
ourNode = xmlNode.find(’newNodeWeNeedToRead’)
# get the information in the node
self.ourNewVariable = ourNode.text
# end function
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12.4.2 Method: def initialize

The initialize method can be implemented in the External Model in order to initialize some vari-
ables needed by it. For example, it can be used to compute a quantity needed by the “run” method
before performing the actual calculation). If this method is implemented in the External Model,
RAVEN is going to call it at the initialization stage of each “Step” (see section 14. RAVEN will
communicate, thorough a set of method attributes, all the information that are generally needed to
perform a initialization:

• runInfo, a dictionary containing information regarding how the calculation is set up (e.g.
number of processors, etc.). It contains the following attributes:

– DefaultInputFile – default input file to use

– SimulationFiles – the xml input file

– ScriptDir – the location of the pbs script interfaces

– FrameworkDir – the directory where the framework is located

– WorkingDir – the directory where the framework should be running

– TempWorkingDir – the temporary directory where a simulation step is run

– NumMPI – the number of mpi process by run

– NumThreads – number of threads by run

– numProcByRun – total number of core used by one run (number of threads by number
of mpi)

– batchSize – number of contemporaneous runs

– ParallelCommand – the command that should be used to submit jobs in parallel
(mpi)

– numNode – number of nodes

– procByNode – number of processors by node

– totalNumCoresUsed – total number of cores used by driver

– queueingSoftware – queueing software name

– stepName – the name of the step currently running

– precommand – added to the front of the command that is run

– postcommand – added after the command that is run

– delSucLogFiles – if a simulation (code run) has not failed, delete the relative log
file (if True)

– deleteOutExtension – if a simulation (code run) has not failed, delete the relative
output files with the listed extension (comma separated list, for example: ‘e,r,txt’)
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– mode – running mode, curently the only modes supported are pbsdsh and mpi

– expectedTime – how long the complete input is expected to run

– logfileBuffer – logfile buffer size in bytes

• inputs, a list of all the inputs that have been specified in the “Step” using this model.

In the following an example is reported:

def initialize(self,runInfo,inputs):
# Let’s suppose we just need to initialize some variables
self.sigma = 10.0
self.rho = 28.0
# end function

12.4.3 Method: def createNewInput

The createNewInput method can be implemented by the user to create a new input with the infor-
mation coming from the RAVEN framework. In this function, the user can retrieve the information
coming from the RAVEN framework, during the employment of a calculation flow, and use them
to construct a new input that is going to be transferred to the “run” method. The new input created
needs to be returned to RAVEN (i.e. “return NewInput”). RAVEN communicates, thorough a set
of method attributes, all the information that are generally needed to create a new input:

• inputs, python list, a list of all the inputs that have been defined in the “Step” using this
model.

• samplerType, string, the type of Sampler, if a sampling strategy is employed; will be
None otherwise.

• Kwargs, dictionary, a dictionary containing several pieces of information (that can change
based on the “Step” type). If a sampling strategy is employed, this dictionary contains an-
other dictionary identified by the keyword “SampledVars”, in which the variables perturbed
by the sampler are reported.

Note: If the “Step” that is using this Model has as input(s) an object of main class type “Datas”
(see Section 9), the internal “createNewInput” method is going to convert it in a dictionary of
values.

Here we present an example:
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def createNewInput(self,inputs,samplerType,**Kwargs):
# in here the actual createNewInput of the
# model is implemented
if samplerType == ’MonteCarlo’:

avariable = inputs[’something’]*inputs[’something2’]
else:

avariable = inputs[’something’]/inputs[’something2’]
return avariable*Kwargs[’SampledVars’][’aSampledVar’]

12.4.4 Method: def run

As stated previously, the only method that must be present in an External Module is the run
function. In this function, the user needs to implement the algorithm that RAVEN will exe-
cute. The run method is generally called after having inquired the “createNewInput” method
(either the internal or the user-implemented one). The only attribute this method is going to re-
ceive is a Python list of inputs (the inputs coming from the createNewInput method). If
the user wants RAVEN to collect the results of this method, the outcomes of interest need to be
stored in “self.” Note: RAVEN is trying to collect the values of the variables listed only in the
<ExternalModel> XML block.

In the following an example is reported:

def run(self,Input):
# in here the actual run of the
# model is implemented
input = Input[0]
self.outcome = self.sigma*self.rho*input[‘‘whatEver’’]

12.5 PostProcessor

A Post-Processor (PP) can be considered as an action performed on a set of data or other type of
objects. Most of the post-processors contained in RAVEN, employ a mathematical operation on
the data given as “input”. RAVEN supports several different types of PPs.

Currently, the following PPs are available in RAVEN:

• BasicStatistics
• ComparisonStatistics
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• SafestPoint
• LimitSurface
• External
• TopologicalDecomposition

The specifications of these PPs must be defined within the XML block <PostProcessor>.
This XML node needs to contain the attributes:

• name, required string attribute, user-defined identifier of this post-processor. Note: As
with other objects, this is the name that can be used to refer to this specific entity from other
input XML blocks.

• subType, required string attribute, defines which of the post-processors needs to be used,
choosing among the previously reported types. This choice conditions the subsequent re-
quired and/or optional <PostProcessor> sub nodes.

As already mentioned, all the types and meaning of the remaining sub-nodes depend on the
post-processor type specified in the attribute subType. In the following sections the specifications
of each type are reported.

12.5.0.1 BasicStatistics

The BasicStatistics post-processor is the container of the algorithms to compute many of the most
important statistical quantities. In order to use the BasicStatistics post-processor PP, the user
needs to set the subType of a <PostProcessor> node:

<PostProcessor subType=’BasicStatistics’/>.

Several sub-nodes are available:

• <what>, comma separated string, required field, List of quantities to be computed. Cur-
rently the quantities available are:

– covariance matrix – covariance matrix

– NormalizedSensitivity – matrix of normalized sensitivity coefficients

– sensitivity – matrix of sensitivity coefficients

– pearson – matrix of sensitivity coefficients

– expectedValue – expected value or mean

– sigma – standard deviation

– variationCoefficient – coefficient of variation (sigma/expected value)
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– variance – variance

– skewness – skewness

– kurtois – kurtois

– median – median

– percentile – 95 percentile

If all the quantities need to be computed, the user can input in the body of <what> the string
“all.”

• <parameters>, comma separated string, required field, lists the parameters on which
the previous operations need to be applied (e.g., massFlow, Temperature)

• <methodsToRun>, comma separated string, optional field, specifies the method names
of an external Function that need to be run before computing any of the predefined quantities.
If this XML node is specified, the <Function> node must be present.
Default: None

• Assembler Objects These objects are either required or optional depending on the function-
ality of the Adaptive Sampler. The objects must be listed with a rigorous syntax that, except
for the xml node tag, is common among all the objects. Each of these nodes must contain 2
attributes that are used to map those within the simulation framework:

– class, required string attribute, it is the main “class” the listed object is from;

– type, required string attribute, it is the object identifier or sub-type.

The BasicStatistics post-processor approach optionally accepts the following object type:

– <Function>, string, required field, The body of this xml block needs to contain the
name of an External Function defined within the <Functions> main block (see sec-
tion 13). This object needs to contain the methods listed in the node <methodsToRun>.

Example:

<Simulation>
...
<Models>

...
<PostProcessor name=’aUserDefinedName’

subType=’BasicStatistics’ debug=’true’>
<!-- Here you can specify what type of figure of merit

you need to compute: expectedValue, sigma, variance,
kurtosis, pearson, covariance, etc.

-->
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<what>expectedValue</what>
<parameters>x01,x02</parameters>
<methodsToRun>failureProbability</methodsToRun>

</PostProcessor>
...

</Models>
...

</Simulation>

12.5.0.2 ComparisonStatistics

The ComparisonStatistics post-processor computes statistics for comparing two different datas.
This is an experimental post-processor, and it will definitely change as it is further developed.

There are two nodes that are used in the post-processor.

• <kind>: specifies information to use for comparing the data that is provided. This takes
either uniform bins which makes the bin width uniform or equal probability which makes
the number of counts in each bin equal. It can take the following attributes:

– num bins which takes a number that directly specifies the number of bins

– bin method which takes a string that specifies the method used to calculate the number
of bins. This can be either square-root or sturges.

• <compare>: specifies the data to use for comparison. This can either be a normal distribu-
tion or a datas:

– <data>: This will specify the data that is used. The different parts are separated by
|’s.

– <reference>: Specifies that a normal distribution will be used. It takes two at-
tributes.

∗ mean is the mean of the normal distribution
∗ sigma is the standard deviation of the normal distribution.

The ComparisonStatistics post-processor generates a variety of data. First for each data pro-
vided, it calculates bin boundaries, and counts the numbers of data points in each bin. From the
numbers in each bin, it creates a cdf function numerically, and from the cdf takes the derivative to
generate a pdf. It also calculates statistics of the data such as mean and standard deviation.
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The post-processor uses the generated pdf and cdf function to calculate various statistics. The
first is the cdf area difference which is:

cdf area difference =

∫ ∞
−∞
‖CDFa(x)− CDFb(x)‖dx (11)

This given an idea about how far apart the two pieces of data are, and it will have units of x.

The common area between the two pdfs is calculated. If there is perfect overlap, this will be
1.0, if there is no overlap, this will be 0.0. The formula used is:

pdf common area =

∫ ∞
−∞

min(PDFa(x), PDFb(x))dx (12)

The difference pdf between the two pdfs is calculated. This is calculated as:

fZ(z) =

∫ ∞
−∞

fX(x)fY (x− z)dx (13)

This produces a pdf that contains information about the difference between the two pdfs. The mean
can be calculated as:

z̄ =

∫ ∞
−∞

zfZ(z)dz (14)

The mean can be used to get an signed difference between the pdfs, which shows how their means
compare.

The variance of the difference pdf can be calculated as:

var =

∫ ∞
−∞

(z − z̄)2fZ(z)dz (15)

Example: ———————————————-

<Simulation>
...
<Models>

...
<PostProcessor name="stat_stuff"

subType="ComparisonStatistics">
<kind bin_method=’sturges’>uniform_bins</kind>
<compare>
<data>OriData|Output|tsin_TEMPERATURE</data>
<reference mean="410.0" sigma="2.0" />

</compare>
<compare>
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<data>OriData|Output|tsin_TEMPERATURE</data>
<data>OriData|Output|tsout_TEMPERATURE</data>

</compare>
</PostProcessor>
<PostProcessor name="stat_stuff2"

subType="ComparisonStatistics">
<kind num_bins="6">equal_probability</kind>
<compare>

<data>OriData|Output|tsin_TEMPERATURE</data>
</compare>

</PostProcessor>
...

</Models>
...

</Simulation>
----------------------------------------------

12.5.0.3 SafestPoint

The SafestPoint post-processor provides the coordinates of the farthest point from the limit surface
that is given as an input. The safest point coordinates are expected values of the coordinates of the
farthest points from the limit surface in the space of the “controllable” variables based on the
probability distributions of the “non-controllable” variables.

The term “controllable” identifies those variables that are under control during the system op-
eration, while the “non-controllable” variables are stochastic parameters affecting the system be-
haviour randomly.

The “SafestPoint” post-processor requires the set of points belonging to the limit surface, which
must be given as an input. The probability distributions as “Assembler Objects” are required in the
“Distribution” section for both “controllable” and “non-controllable” variables.

The sampling method used by the “SafestPoint” is a “value” or “CDF” grid. At present only
the “equal” grid type is available.

In order to use the Safest Point PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor subType=’SafestPoint’/>.

Several sub-nodes are available:
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• <Distribution>, Required, represents the probability distributions of the “controllable”
and ”non-controllable” variables. These are Assembler Objects, each of these nodes must
contain 2 attributes that are used to identify those within the simulation framework:

– class, required string attribute, is the main “class” the listed object is from.

– type, required string attribute, is the object identifier or sub-type.

• <controllable> lists the controllable variables. Each variable is associated with its
name and the two items below:

– <distribution> names the probability distribution associated with the control-
lable variable.

– <grid> specifies the type, steps, and tolerance of the sampling grid.

• <non-controllable> lists the non-controllable variables. Each variable is associated
with its name and the two items below:

– <distribution> names the probability distribution associated with the non-controllable
variable.

– <grid> specifies the type, steps, and tolerance of the sampling grid.

Example:

<Simulation>
...

<Models>
...
<PostProcessor name=’SP’ subType=’SafestPoint’>

<Distribution class=’Distributions’
type=’Normal’>x1_dst</Distribution>

<Distribution class=’Distributions’
type=’Normal’>x2_dst</Distribution>

<Distribution class=’Distributions’
type=’Normal’>gammay_dst</Distribution>

<controllable>
<variable name=’x1’>

<distribution>x1_dst</distribution>
<grid type=’value’ steps=’20’>1</grid>

</variable>
<variable name=’x2’>

<distribution>x2_dst</distribution>
<grid type=’value’ steps=’20’>1</grid>

</variable>

182



</controllable>
<non-controllable>
<variable name=’gammay’>

<distribution>gammay_dst</distribution>
<grid type=’value’ steps=’20’>2</grid>

</variable>
</non-controllable>

</PostProcessor>
...

</Models>
...

</Simulation>

12.5.0.4 LimitSurface

The LimitSurface post-processor is aimed to identify the transition zones that determine a change
in the status of the system (Limit Surface).

In order to use the LimitSurface PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor subType=’LimitSurface’/>.

Several sub-nodes are available:

• <parameters>, comma separated string, required field, lists the parameters that define
the uncertain domain and from which the LS needs to be computed.

• <tolerance>, float, optional field, sets the absolute value (in CDF) of the convergence
tolerance. This value defines the coarseness of the evaluation grid. Default= 1.e-4

• Assembler Objects These objects are either required or optional depending on the function-
ality of the Adaptive Sampler. The objects must be listed with a rigorous syntax that, except
for the xml node tag, is common among all the objects. Each of these nodes must contain 2
attributes that are used to map those within the simulation framework:

– class, required string attribute, is the main “class” of the listed object. For example,
it can be “Models,” “Functions,” etc.

– type, required string attribute, is the object identifier or sub-type. For example, it
can be “ROM,” “External,” etc.

The LimitSurface post-processor requires or optionally accepts the following objects’ types:
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– <ROM>, string, optional field, body of this xml node must contain the name of a ROM
defined in the <Models> block (see section 12.3).

– <Function>, string, required field, the body of this xml block needs to contain the
name of an External Function defined within the <Functions> main block (see sec-
tion 13). This object represents the boolean function that defines the transition bound-
aries. This function must implement a method called residuumSign(self), that returns
either -1 or 1, depending on the system conditions (see section 13).

Example:

<Simulation>
...
<Models>
...

<PostProcessor name="computeLimitSurface"
subType=’LimitSurface’ debug=’True’>
<what>all</what>
<parameters>x0,y0</parameters>
<parameters>x0,y0</parameters>
<ROM class=’Models’ type=’ROM’>Acc</ROM>
<!-- Here, you can add a ROM defined in Models block.

If it is not Present, a nearest neighbor algorithm
will be used.

-->
<Function class=’Functions’ type=’External’>
goalFunctionForLimitSurface

</Function>
</PostProcessor>
...

</Models>
...

</Simulation>

12.5.0.5 External

The External post-processor will execute an arbitrary python function defined externally using the
Functions interface (see Section 13 for more details).

In order to use the External PP, the user needs to set the subType of a <PostProcessor>
node:
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<PostProcessor subType=’External’/>.

Several sub-nodes are available:

• <method>, comma separated string, required field, lists the method names
of an external Function that will be computed (each returning a post-processing value).

• <Assembler>, xml node, required field, contains a “list” of Functions where
the methods listed above are defined. The objects must be listed with a rigorous syntax that,
except for the xml node tag, is common among all the objects. Each of these sub-nodes must
contain 2 attributes that are used to map them within the simulation framework:

– class, required string attribute, is the main “class” the listed object is from, the only
acceptable class for this post-processor is Functions;

– type, required string attribute, is the object identifier or sub-type, the only acceptable
type for this post-processor is External.

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="externalPP" subType=’External’

debug=’True’>
<method>Delta,Sum</method>
<Assembler>
<Function class=’Functions’

type=’External’>operators</Function>
<!--Here, you can add a Function defined in the

Functions block. This should be present or
else RAVEN will not know where to find the
defined methods.

-->
</Assembler>

</PostProcessor>
...

</Models>
...

</Simulation>

185



12.5.0.6 TopologicalDecomposition

The TopologicalDecomposition post-processor will compute an approximated hierarchical Morse-
Smale complex and perform linear regression on each component.

In order to use the TopologicalDecomposition post-processor, the user needs to set the attribute
subType: <PostProcessor subType=’TopologicalDecomposition’>. The fol-
lowing is a list of acceptable sub-nodes:

• <graph> , string, optional field, specifies the type of neighborhood graph used in the
algorithm, available options are:

– Beta Skeleton

– Relaxed Beta Skeleton

– Approximate KNN

Default: Beta Skeleton

• <gradient>, string, optional field, specifies the method used for estimating the gradient,
available options are:

– Steepest

Default: Steepest

• <beta>, float, optional field, is only used when the graph is set to Beta Skeleton or
Relaxed Beta Skeleton.
Default: 1.0

• <knn>, integer, optional field, is the number of neighbors when using the Approximate KNN
for the graph sub-node and used to speed up the computation of other graphs by using the
approximate knn graph as a starting point for pruning. -1 means use a fully connected graph.

Default: -1

• <persistence>, float, optional field, specifies the amount of noise reduction to apply
before returning labels.
Default: 0

• <parameters>, comma separated string, required field, lists the parameters defining the
input space.
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• <response>, string, required field, is a single variable name defining the scalar output
space.

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="***" subType=’TopologicalDecomposition’>

<graph>Beta Skeleton</graph>
<gradient>Steepest</gradient>
<beta>1</beta>
<knn>8</knn>
<parameters>X,Y</parameters>
<response>Z</response>

</PostProcessor>
...

<Models>
...

<Simulation>
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13 Functions

The RAVEN code provides support for the usage of user-defined external functions. These func-
tions are python modules, with a format that is automatically interpretable by the RAVEN frame-
work. For example, users can define their own method to perform a particular post-processing
activity and the code will be embedded and use the function as though it were an active part of the
code itself. In this section, the XML input syntax and the format of the accepted functions are fully
specified.

The specifications of an external function must be defined within the XML block <External>.
This XML node requires the following attributes:

• name, required string attribute, user-defined name of this function. Note: As with other
objects, this name can be used to refer to this specific entity from other input blocks in the
XML.

• file, required string attribute, absolute or relative path specifying the code associated to
this function. Note: If a relative path is specified, it must be relative with respect to where
the user is running the instance of RAVEN.

In order to make the RAVEN code aware of the variables the user is going to manipulate/use in
her/his own python function, the variables need to be specified in the <External> input block.
The user needs to input, within this block, only the variables directly used by the external code and
not the local variables that the user does not want, for example, those stored in a RAVEN internal
object. These variables are named within consecutive <variable> XML nodes:

• <variable>, string, required parameter, in the body of this XML node, the user needs
to specify the name of the variable. This variable needs to match a variable used/defined in
the external python function.

When the external function variables are defined, at runtime, RAVEN initializes them and keeps
track of their values during the simulation. Each variable defined in the <External> block is
available in the function as a python self. member. In the following, an example of a user-
defined external function is reported (a python module and its related XML input specifications).

Example Python Function:

import numpy as np
def residuumSign(self):

if self.var1 < self.var2 :
return 1

else:
return -1
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Example XML Input:

...
<Functions>

...
<External name=’whatever’ file=’path_to_python_file’>
...
<variable>var1</variable>
<variable>var2</variable>
...
</External>
...

</Functions>
...

</Simulation>
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14 Steps

The core of the RAVEN calculation flow is the Step system. The Step is in charge of assembling
different entities in RAVEN (e.g. Samplers, Models, DataBases, etc.) in order to perform a task
defined by the kind of step being used. A sequence of different Steps represents the calculation
flow.

Before analyzing each Step type, it is worth to 1) explain how a general Step entity is orga-
nized, and 2) introduce the concept of step “role” . In the following example, a general example of
a Step is shown below:

<Simulation>
...
<Steps>

...
<WhatEverStepType name=’aName’>

<Role1 class=’aMainClassType’
type=’aSubType’>userDefinedName1</Role1>

<Role2 class=’aMainClassType’
type=’aSubType’>userDefinedName2</Role2>

<Role3 class=’aMainClassType’
type=’aSubType’>userDefinedName3</Role3>

<Role4 class=’aMainClassType’
type=’aSubType’>userDefinedName4</Role4>

</WhatEverStepType>
...

</Steps>
...

</Simulation>

As shown above each Step consists of a list of entities organized into “Roles.” Each role represents
a behavior the entity (object) will assume during the evaluation of the Step. In RAVEN, several
different roles are available:

• Input represents the input of the Step. The allowable input objects depend on the type of
Model in the Step.

• Output defines where to collect the results of an action performed by the Model. It is
generally one of the following types: Datas, DataBases, or OutStreamManager.

• Model represents a physical or mathematical system or behavior. The object used in this
role defines the allowable types of Inputs and Outputs usable in this step.
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• Sampler defines the sampling strategy to be used to probe the model.

• Function is an extremely important role. It introduces the capability to perform pre or post
processing of Model Inputs and Outputs. Its specific behavior depends on the Step is using
it.

• ROM defines an acceleration Reduced Order Model to use for a Step.

• SolutionExport represents the container of the eventual output of a Sampler. For the mo-
ment, it is only used when a Step is employing the search of the Limit Surface (LS), through
the class of Adaptive Samplers). In this case, it contains the coordinates of the LS in the
input space.

Depending on the Step type, different combinations of these roles can be used. For this reason, it
is important to analyze each Step type in details.

The available steps are the following

• SingleRun (see Section 14.1)

• MultiRun(see Section 14.2)

• IOStep(see Section 14.3)

• RomTrainer(see Section 14.4)

• PostProcess(see Section 14.5)

14.1 SingleRun

The SingleRun is the simplest step the user can use to assemble a calculation flow: perform a
single action of a Model. For example, it can be used to run a single job (Code Model) and collect
the outcome(s) in a “Datas” object of type TimePoint or History (see Section 9 for more details
on available data representations).

The specifications of this Step must be defined within a <SingleRun> XML block. This
XML node has the following definable attributes:

• name, required string attribute, user-defined name of this Step. Note: This name is used
to reference this specific entity in the <RunInfo> block, under the <Sequence> node. If
the name of this Step is not listed in the <Sequence> block, its action is not going to be
performed.
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• pauseAtEnd, optional boolean/string attribute (case insensitive), if True (True values
= True, yes, y, t), the code will pause at the end of the step, waiting for a user signal to
continue. This is used in case one or more of the Outputs are of type OutStreamManager.
For example, it can be used when an OutStreamManager of type Plot is output to the
screen. Thus, allowing the user to interact with the Plot (e.g. rotate the figure, change the
scale, etc.).
Default: False.

In the <SingleRun> input block, the user needs to specify the objects needed for the different
allowable roles. This step accepts the following roles:

• <Input>, string, required parameter, names an entity (defined elsewhere in the RAVEN
input) that will be used as input for the model specified in this step. This XML node accepts
the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. For example, ’Files’, ’Datas’,
’DataBases’, etc.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the main object class. For example, if the class attribute
is ’Datas’, the type attribute might be ’TimePointSet’. Note: The class
’Files’ has no type (i.e. type=’’).

Note: The class and, consequently, the type usable for this role depends on the particular
<Model> being used. In addition, the user can specify as many <Input> nodes as needed.

• <Model>, string, required parameter, names an entity defined elsewhere in the input file
to be used as a model for this step. This XML node accepts the following attributes:

– class, required string attribute, main object class type. For this role, only ’Models’
can be used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the Models object class. For example, the type attribute might
be ’Code’, ’ROM’, etc.

• <Output>, string, required parameter names an entity defined elsewhere in the input to
use as the output for the Model. This XML node recognizes the following attributes:

– class, required string attribute, main object class type. For this role, only ’Datas’,
’DataBases’, and ’OutStreamManager’ can be used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the main object class. For example, if the class attribute is
’Datas’, the type attribute might be ’TimePointSet’.

192



Note: The number of <Output> nodes is unlimited.

Example:

<Steps>
...
<SingleRun name=’StepName’ pauseAtEnd=’false’>

<Input class=’Files’
type=’’>anInputFile.i</Input>

<Input class=’Files’ type=’’>aFile</Input>
<Model class=’Models’ type=’Code’>aCode</Model>
<Output class=’DataBases’ type=’HDF5’>aDataBase</Output>
<Output class=’Datas’

type=’History’>aData</Output>
</SingleRun>
...

</Steps>

14.2 MultiRun

The MultiRun step allows the user to assemble the calculation flow of an analysis that requires
multiple “runs” of the same model. This step is used, for example, when the input (space) of the
model needs to be perturbed by a particular sampling strategy.

The specifications of this type of step must be defined within a <MultiRun> XML block.
This XML node recognizes the following list of attributes:

• name, required string attribute, user-defined name of this Step. Note: As with other ob-
jects, this name is used to reference this specific entity in the <RunInfo> block, under the
<Sequence> node. If the name of this Step is not listed in the <Sequence> block, its
action is not going to be performed.

• pauseAtEnd, optional boolean/string attribute, if True (True values = True, yes, y, t), the
code will pause at the end of the step, waiting for a user signal to continue. This is used in
case one or more of the Outputs are of type OutStreamManager. For example, it can be
used when an OutStreamManager of type Plot is output to the screen. Thus, allowing the
user to interact with the Plot (e.g. rotate the figure, change the scale, etc.).

• sleepTime, optional float attribute, in this attribute the user can specify the waiting time
(seconds) between two subsequent inquiries of the status of the submitted job (i.e. check if
a run has finished).
Default: 0.05.

In the <MultiRun> input block, the user needs to specify the objects that need to be used for the
different allowable roles. This step accepts the following roles:
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• <Input>, string, required parameter, names an entity to be used as input for the model
specified in this step. This XML node accepts the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. For example, ’Files’, ’Datas’,
’DataBases’, etc.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’Datas’, the type attribute might be ’TimePointSet’. Note: The class ’Files’
has no type (i.e. type=’’).

Note: The class and, consequently, the type usable for this role depend on the particular
<Model> being used. The user can specify as many <Input> nodes as needed.

• <Model>, string, required parameter names an entity defined elsewhere in the input that
will be used as the model for this step. This XML node recognizes the following attributes:

– class, required string attribute, main object class type. For this role, only ’Models’
can be used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the Models object class. For example, the type attribute might
be ’Code’, ’ROM’, etc.

• <Sampler>, string, required parameter names an entity defined elsewhere in the input file
to be used as a sampler. As mentioned in Section 8, the Sampler is in charge of defining the
strategy to characterize the input space. This XML node recognizes the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used. Only ’Samplers’ can be used for this role.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the Samplers object class. For example, the type attribute
might be ’MonteCarlo’, ’Adaptive’, ’AdaptiveDET’, etc. See Section 8 for
all the different types currently supported.

• <SolutionExport>, string, optional parameter identifies an entity to be used for ex-
porting key information coming from the Sampler object during the simulation. This XML
node accepts the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. For this role, only ’Datas’ can be
used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the Datas object class. For example, the type attribute might
be ’Code’, ’ROM’, etc.
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Note: Whether or not it is possible to export the Sampler solution depends on the
type. Currently, only the Samplers in the ’Adaptive’ category can export their
solution into a <SolutionExport> entity. For example, if <Sampler> is of type
’Adaptive’, the <SolutionExport> needs to be of type ’TimePointSet’
and it will contain the coordinates, in the input space, that belong to the “Limit Surface.”

• <Output>, string, required parameter identifies an entity to be used as output for this step.
This XML node recognizes the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. For this role, only ’Datas’,
’DataBases’, and ’OutStreamManager’ may be used.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’Datas’, the type attribute might be ’TimePointSet’.

Note: The number of <Output> nodes is unlimited.

Example:

<Steps>
...
<MultiRun name=’StepName1’ pauseAtEnd=’False’ sleepTime=’0.01’>

<Input class=’Files’ type=’’>anInputFile.i</Input>
<Input class=’Files’ type=’’>aFile</Input>
<Sampler class=’Samplers’ type = ’Grid’>aGridName</Sampler>
<Model class=’Models’ type=’Code’>aCode</Model>
<Output class=’DataBases’ type=’HDF5’>aDataBase</Output>
<Output class=’Datas’ type=’History’>aData</Output>

</MultiRun >
<MultiRun name=’StepName2’ pauseAtEnd=’True’ sleepTime=’0.02’>

<Input class=’Files’ type=’’>anInputFile.i</Input>
<Input class=’Files’ type=’’>aFile</Input>
<Sampler class=’Samplers’ type=’Adaptive’>anAS</Sampler>
<Model class=’Models’ type=’Code’>aCode</Model>
<Output class=’DataBases’ type=’HDF5’>aDataBase</Output>
<Output class=’Datas’ type=’History’>aData</Output>
<SolutionExport class=’Datas’ type=’TimePointSet’>

aTPS
</SolutionExport>

</MultiRun>
...

</Steps>
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14.3 IOStep

As the name suggests, the IOStep is the step where the user can perform input/output operations
among the different I/O entities available in RAVEN. This step type is used to:

• construct/update a DataBase from a Datas object, and vice versa;

• construct/update a DataBase or a Datas object from CSV files contained in a directory;

• stream the content of a DataBase or a Datas out through an OutStream object (see section
11);

• store/retrieve a ROM to/from an external File using Pickle module of Python.

This last function can be used to create and store mathematical model of fast solution trained to pre-
dict a response of interest of a physical system. This model can be recovered in other simulations
or used to evaluate the response of a physical system in a Python program by the implementing of
the Pickle module. The specifications of this type of step must be defined within an <IOStep>
XML block. This XML node can accept the following attributes:

• name, required string attribute, user-defined name of this Step. Note: As for the other
objects, this is the name that can be used to refer to this specific entity in the <RunInfo>
block, under the <Sequence> node.

• pauseAtEnd, optional boolean/string attribute (case insensitive), if True (True values
= True, yes, y, t), the code will pause at the end of the step, waiting for a user signal to
continue. This is used in case one or more of the Outputs are of type OutStreamManager.
For example, it can be used when an OutStreamManager of type Plot is output to the
screen. Thus, allowing the user to interact with the Plot (e.g. rotate the figure, change the
scale, etc.).
Default: False.

In the <IOStep> input block, the user specifies the objects that need to be used for the different
allowable roles. This step accepts the following roles:

• <Input>, string, required parameter, names an entity that is going to be used as a source
(input) from which the information needs to be extracted. This XML node recognizes the
following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. As already mentioned, the allowable
main classes are ’Datas’, ’DataBases’, ’Models’ and ’Files’.
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– type, required string attribute, the actual entity type. This attribute needs to spec-
ify the object type within the main object class. For example, if the class attribute
is ’Datas’, the type attribute might be ’TimePointSet’. If the class at-
tribute is ’Models’, the type attribute must be ’ROM’ and if the class attribute
is ’Files’, the type attribute must be ’ ’

• <Output>, string, required parameter names an entity to be used as the target (output)
where the information extracted in the input will be stored. This XML node needs to contain
the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. The allowable main classes are
’Datas’, ’DataBases’, ’OutStreamManager’, ’Models’ and ’Files’.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’OutStreamManager’, the type attribute might be ’Plot’.

This step acts as a “transfer network” among the different RAVEN storing (or streaming) objects.
The number of <Input> and <Output> nodes is unlimited, but should match. This step assumes
a 1-to-1 mapping (e.g. first <Input> is going to be used for the first <Output>, etc.).
Note: This 1-to-1 mapping is not present when <Output> nodes are of class
’OutStreamManager’, since OutStreamManager objects are already linked to a Data object
in the relative RAVEN input block.

In this case, the user needs to provide in the <Input> nodes, all of the “Datas” objects linked
to the OutStreamManager objects (see the example below):

<Steps>
...
<IOStep name=’OutStreamStep’>

<Input class=’Datas’ type=’Histories’>aHistories</Input>
<Input class=’Datas’ type=’TimePointSet’>aTPS</Input>
<Output class=’OutStreamManager’ type=’Plot’>plot_hist
</Output>
<Output class=’OutStreamManager’ type=’Print’>print_hist
</Output>
<Output class=’OutStreamManager’ type=’Print’>print_tps
</Output>
<Output class=’OutStreamManager’ type=’Print’>print_tp
</Output>

</IOStep>
<IOStep name=’PushDatasIntoDataBase’>

<Input class=’Datas’ type=’Histories’>aHistories</Input>
<Input class=’Datas’ type=’TimePointSet’>aTPS</Input>
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<Output class=’DataBases’ type=’HDF5’>aDataBase</Output>
<Output class=’DataBases’ type=’HDF5’>aDataBase</Output>

</IOStep>
<IOStep name=’ConstructDatasFromDataBase’>

<Input class=’DataBases’ type=’HDF5’>aDataBase</Input>
<Input class=’DataBases’ type=’HDF5’>aDataBase</Input>
<Output class=’Datas’ type=’Histories’>aHistories</Output>
<Output class=’Datas’ type=’TimePointSet’>aTPS</Output>

</IOStep>
<IOStep name=’PushROMIntoFile’>

<Input class=’Models’ type=’ROM’>aROM</Input>
<Output class=’Files’ type=’’>aFile</Output>

</IOStep>
<IOStep name=’ImportROMFromFile’>

<Input class=’Files’ type=’’>zFile</Input>
<Output class=’Models’ type=’ROM’>zROM</Output>

</IOStep>
...

</Steps>

Example of how to use a ROM exported by RAVEN using the IOStep, where (x1,x2) are the input
variable names for which the ROM has been trained: Example Python Function:

import os
from glob import glob
import inspect
import utils
import numpy as np
for dirr,_,_ in os.walk("path_to_framework"):
utils.add_path(dirr)
import pickle
fileobj = open(’zFile’,’rb’)
unpickledObj = pickle.load(fileobj)
dictionary={"x1":np.atleast_1d(Value1),"x2":np.atleast_1d(Value2)}
eval=unpickledObj.evaluate(dictionary)
print str(eval)
fileobj.close()
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14.4 RomTrainer

The RomTrainer step type performs the training of a Reduced Order Model. The specifications of
this step must be defined within a <RomTrainer> block. This XML node accepts the attributes:

• name, required string attribute, user-defined name of this step. Note: As for the other
objects, this is the name that can be used to refer to this specific entity in the <RunInfo>
block under <Sequence>.

In the <RomTrainer> input block, the user will specify the objects needed for the different
allowable roles. This step accepts the following roles:

• <Input>, string, required parameter names an entity to be used as a source (input) from
which the information needs to be extracted. This XML node accepts the following at-
tributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. The only allowable main class is
’Datas’.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, the type attribute might be
’TimePointSet’. Note: Since the ROMs currently present in RAVEN are not
time-dependent, the only allowable types are ’TimePoint’ and ’TimePointSet’.

• <Output>, string, required parameter, names a ROM entity that is going to be trained.
This XML node recognizes the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main objects type used in the input. The only allowable main class is
’Models’.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the main object class. The only type accepted here is, currently,
’ROM’.

Example:

<Steps>
...
<RomTrainer name=’aStepName’>

<Input class=’Datas’ type=’TimePointSet’>aTPS</Input>
<Output class=’Models’ type=’ROM’ >aROM</Output>

</RomTrainer>
...

</Steps>
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14.5 PostProcess

The PostProcess step is used to post-process data or manipulate RAVEN entities. It is aimed at
performing a single action that is employed by a Model of type PostProcessor.

The specifications of this type of step is defined within a <PostProcess> XML block. This
XML node specifies the following attributes:

• name, required string attribute, user-defined name of this Step. Note: As for the other
objects, this is the name that is used to refer to this specific entity in the <RunInfo> block
under the <Sequence> node.

• pauseAtEnd, optional boolean/string attribute (case insensitive), if True (True values
= True, yes, y, t), the code will pause at the end of the step, waiting for a user signal to
continue. This is used in case one or more of the Outputs are of type OutStreamManager.
For example, it can be used when an OutStreamManager of type Plot is output to the
screen. Thus, allowing the user to interact with the Plot (e.g. rotate the figure, change the
scale, etc.).
Default: False.

In the <PostProcess> input block, the user needs to specify the objects needed for the different
allowable roles. This step accepts the following roles:

• <Input>, string, required parameter, names an entity to be used as input for the model
specified in this step. This XML node accepts the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. For example, ’Files’, ’Datas’,
’DataBases’, etc.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’Datas’, the type attribute might be ’TimePointSet’. Note: The class ’Files’
has no type (i.e. type=’’).

Note: The class and, consequently, the type usable for this role depends on the particular
type of PostProcessor being used. In addition, the user can specify as many <Input> nodes
as needed by the model.

• <Model>, string, required parameter, names an entity to be used as a model for this step.
This XML node recognizes the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. For this role, only ’Models’ can
be used.
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– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the ’Models’ object class. The only type accepted here is
’PostProcessor’.

• <Output>, string, required/optional parameter, names an entity to be used as output for
the PostProcessor. The necessity of this XML block and the types of entities that can be used
as output depend on the type of PostProcessor that has been used as a Model (see section
12.5). This XML node specifies the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’Datas’, the type attribute might be ’TimePointSet’.

Note: The number of <Output> nodes is unlimited.

Example:

<Steps>
...
<PostProcess name=’PP1’>

<Input class=’Datas’ type=’TimePointSet’ >aData</Input>
<Model class=’Models’ type=’PostProcessor’>aPP</Model>
<Output class=’Files’ type=’’>anOutputFile.csv</Output>

</PostProcess>
...

</Steps>
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15 Existing Interfaces

15.1 Generic Interface

The GenericCode interface is meant to handle a wide variety of generic codes that take take
straightforward input files and produce output CSV files. There are some limitations for this inter-
face. If a code:
• accepts a keyword-based input file with no cross-dependent inputs,

• has no more than one filetype extension per command line flag,

• and returns a CSV with the input parameters and output parameters,
the GenericCode interface should cover the code for RAVEN.

If a code contains cross-dependent data, the generic interface is not able to edit the correct val-
ues. For example, if a geometry-building script specifies inner radius, outer radius, and thickness,
the generic interface cannot calculate the thickness given the outer and inner radius, or vice versa.

An example of the code interface is shown here. The input parameters are read from the input
files gen.one and gen.two respectively. The code is run using python, so that is part of the
<prepend> node. The command line entry to normally run the code is

python poly_inp.py -i gen.one -a gen.two -o myOut

and produces the output myOut.csv.

Example:

<Code name="poly" subType="GenericCode">
<executable>GenericInterface/poly_inp.py</executable>
<inputExtentions>.one,.two</inputExtentions>
<clargs type=’prepend’ arg=’python’/>
<clargs type=’input’ arg=’-i’ extension=’.one’/>
<clargs type=’input’ arg=’-a’ extension=’.two’/>
<clargs type=’output’ arg=’-o’/>
<prepend>python</prepend>

</Code>
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15.2 RELAP5 Interface

15.2.1 Files

In the <Files> section, as specified before, all of the files needed for the code to run should be
specified. In the case of RELAP5, the files typically needed are:

• RELAP5 Input file

• Table file or files that RELAP needs to run

• The Relap5 executable

Example:

<Files>X10.i,tpfh2o,r5executable.x</Files>

It is a good practice to put inside the working directory all of these files and also:

• the RAVEN input file

• the license for the executable of RELAP5

15.2.2 Sequence

In the <Sequence> section, the names of the steps declared in the <Steps> block should be
specified. As an example, if we called the first multirun “Grid Sampler” and the second multirun
“MC Sampler” in the sequence section we should see this:

<Sequence>Grid_Sampler,MC_Sampler</Sequence>

15.2.3 batchSize and mode

For the <batchSize> and <mode> sections please refer to the <RunInfo> block in the previ-
ous chapters.
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15.2.4 RunInfo

After all of these blocks are filled out, a standard example RunInfo block may look like the example
below:

<RunInfo>
<WorkingDir>˜/working_dir</WorkingDir>
<Files>inputfilerelap.i,tpfh2o,executablerelap5.x</Files>
<Sequence>Grid_Sampler,MC_Sampler</Sequence>
<batchSize>1</batchSize>
<mode>pbsdsh</mode>
<expectedTime>1:00:00</expectedTime>
<ParallelProcNumb>1</ParallelProcNumb>

</RunInfo>

15.2.5 Models

For the <Models> block here is a standard example of how it would look when using RELAP5
as the external model:

<Models>
<Code name=’MyRELAP’ subType=’Relap5’>

<executable>˜/path_to_the_executable</executable>
</Code>

</Models>

15.2.6 Distributions

The <Distribution> block defines the distributions that are going to be used for the sampling
of the variables defined in the <Samplers> block. For all the possibile distributions and all their
possible inputs please see the chapter about Distributions (see 7). Here we give a general example
of three different distributions:

<Distributions debug=’True’>
<Triangular name=’BPfailtime’>

<apex>5.0</apex>
<min>4.0</min>

<max>6.0</max>
</Triangular>
<LogNormal name=’BPrepairtime’>
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<mean>0.75</mean>
<sigma>0.25</sigma>

</LogNormal>
<Uniform name=’ScalFactPower’>

<low>1.0</low>
<hi>1.2</hi>

</Uniform>
</Distributions>

It is good practice to name the distribution something similar to what kind of variable is going
to be sampled, since there might be many variables with the same kind of distributions but different
input parameters.

15.2.7 Samplers

In the <Samplers> block we want to define the variables that are going to be sampled. Example:
We want to do the sampling of 3 variables:

• Battery Fail Time

• Battery Repair Time

• Scaling Factor Power Rate

We are going to sample these 3 variables using two different sampling methods: grid and
MonteCarlo.

In RELAP5, the sampler reads the variable as, given the name, the first number is the card
number and the second number is the word number. In this example we are sampling:

• For card 0000588 (trip) the word 6 (battery failure time)

• For card 0000575 (trip) the word 6 (battery repari time)

• For card 20210000 (reactor power) the word 4 (reactor scaling factor)

We proceed to do so for both the Grid sampling and the MonteCarlo sampling.

<Samplers debug=’True’>
<Grid name=’Grid_Sampler’ initial_seed =’210491’ >

<variable name=’0000588:6’>
<distribution>BPfailtime</distribution>
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<grid type=’value’ construction=’equal’ lowerBound=’0.0’
steps=’10’>2880</grid>

</variable>
<variable name=’0000575:6’>

<distribution>BPrepairtime</distribution>
<grid type=’value’ construction=’equal’ lowerBound=’0.0’

steps=’10’>2880</grid>
</variable>
<variable name=’20210000:4’>

<distribution>ScalFactPower</distribution>
<grid type=’value’ construction=’equal’ lowerBound=’1.0’

steps=’10’>0.02</grid>
</variable>

</Grid>
<MonteCarlo name=’MC_Sampler’ limit=’1000’>

<variable name=’0000588:6’>
<distribution>BPfailtime</distribution>

</variable>
<variable name=’0000575:6’>

<distribution>BPrepairtime</distribution>
</variable>
<variable name=’20210000:4’>

<distribution>ScalFactPower</distribution>
</variable>

</MonteCarlo>
</Samplers>

It can be seen that each variable is connected with a proper distribution defined in the
<Distributions> block (from the previous example). The following demonstrates how the
input for the first variable is read.

We are sampling a a variable situated in word 6 of the card 0000588 using a Grid sampling
method. The distribution that this variable is following is a Triangular distribution (see section
above). We are sampling this variable beginning from 0.0 in 10 equal steps of 2880.

15.2.8 Steps

For a RELAP interface, the <MultiRun> step type will most likely be used. First, the step needs
to be named: this name will be one of the names used in the <Sequence> block. In our example,
Grid Sampler and MC Sampler.
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<MultiRun name=’Grid_Sampler’ debug=’True’
re-seeding=’210491’>

With this step, we need to import all the files needed for the simulation:

• RELAP input file

• Relap 5 Executable

• element tables – tpfh2o

<Input class=’Files’ type=’’>inputrelap.i</Input>
<Input class=’Files’ type=’’>r5executable.x</Input>
<Input class=’Files’ type=’’>tpfh2o</Input>

We then need to define which model will be used:

<Model class=’Models’ type=’Code’>MyRELAP</Model>

We then need to specify which Sampler is used, and this can be done as follows:

<Sampler class=’Samplers’ type=’Grid’>Grid_Sampler</Sampler>

And lastly, we need to specify what kind of output the user wants. For example the user might want
to make a database (in RAVEN the database created is an HDF5 file). Here is a classical example:

<Output class=’DataBases’ type=’HDF5’>MC_out</Output>

Following is the example of two MultiRun steps which use different sampling methods (grid and
Monte Carlo), and creating two different databases for each one:

<Steps debug=’True’>
<MultiRun name=’Grid_Sampler’ debug=’True’ re-seeding=’210491’>

<Input class=’Files’ type=’’ >X10.i</Input>
<Input class=’Files’ type=’’ >r5executable.x</Input>
<Input class=’Files’ type=’’ >tpfh2o</Input>
<Model class=’Models’ type=’Code’>MyRELAP</Model>
<Sampler class=’Samplers’ type=’Grid’>Grid_Sampler</Sampler>
<Output class=’DataBases’ type=’HDF5’>Grid_out</Output>

</MultiRun>
<MultiRun name=’MC_Sampler’ debug=’True’ re-seeding=’210491’>

<Input class=’Files’ type=’’ >X10.i</Input>
<Input class=’Files’ type=’’

>r5executable.x</Input>
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<Input class=’Files’ type=’’ >tpfh2o</Input>
<Model class=’Models’ type=’Code’ >MyRELAP</Model>
<Sampler class=’Samplers’

type=’MonteCarlo’>MC_Sampler</Sampler>
<Output class=’DataBases’ type=’HDF5’ >MC_out</Output>

</MultiRun>
</Steps>

15.2.9 Databases

As shown in the <Steps> block, the code is creating two database objects called Grid out and
MC out. So the user needs to input the following:

<DataBases>
<HDF5 name="Grid_out"/>
<HDF5 name="MC_out"/>

</DataBases>

As listed before, this will create two databases. The files will have names corresponding to their
name appended with the .h5 extension (i.e. Grid out.h5 and MC out.h5).

15.3 RELAP7 Interface

15.3.1 Files

In the <Files> section, as specified before, all of the files needed for the code to run should be
specified. In the case of RELAP7, the files typically needed are the following:

• RELAP7 Input file

• Control Logic file

Example:

<Files>nat_circ,control_logic.py</Files>
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15.3.2 Models

For the <Models> block RELAP7 uses the RAVEN executable. Here is a standard example of
what can be used to use RELAP7 as the model:

<Models>
<Code name=’MyRAVEN’

subType=’RAVEN’><executable>˜path/to/RAVEN-opt</executable></Code>
</Models>

15.3.3 Distributions

The <Distributions> block, when using RELAP7, has to also be specified through the con-
trol logic. Given the names of the distributions and their parameters, a python file should be used
for the control logic. For example, the sampling of a normal distribution for the primary pressure
in RELAP7 is required.

<Distributions>
<Normal name="Prim_Pres">
<mean>1000000</mean>
<sigma>100<sigma/>
</Normal>
</Distributions>

The python file associated to it should look like this:

def initial_function(monitored, controlled, auxiliary)
print("monitored",monitored,"controlled",
controlled,"auxiliary",auxiliary)

controlled.pressure_in_pressurizer =
distributions.Prim_Pres.getDistributionRandom()
return

15.3.4 Samplers

In the <Samplers> block, which kind of sampling method used, the variables not sampled inside
the control logic, and the distributions for the chosen sampling method will be defined. For the
example, we are performing Monte Carlo sampling with 500 runs. The global initial pressure
wasn’t specified in the control logic so it is sampled in this block. In addition, the initial pressure
is specified to follow the same distribution as the primary pressure.
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<Samplers>
<MonteCarlo name="MC_samp" limit="500">
<variable name="GlobalParams|global_init_P">
<distribution>Prim_Pres</distribution>

</variable>
</MonteCarlo>
</Samplers>
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Figure 1. Code Interface Location.

16 Advanced Users: How to couple a new code

The procedure of coupling a new code/application with RAVEN is quite a straightforward pro-
cess. As for all the systems codes currently supported by RAVEN (e.g. RELAP-7, RELAP5-3D,
BISON, MOOSE, etc.), the coupling is performed through a Python Interface that is in charge of
interpreting the information coming from RAVEN and translating them in the input of the system
code under consideration. The coupling procedure does not require to modify RAVEN itself. As
already mentioned, the developer needs to create a new Python interface that is going to be embed-
ded in RAVEN at run-time (no need to introduce hard-coded coupling statements). This interface
needs to be placed in a folder (whatever name) located in (see figure 1):

path_to_raven_distribution/raven/framework/CodeInterfaces/

At the initialization stage, RAVEN imports all the Interfaces that are contained in the directory
above and performs some preliminary cross-checks. In the following sub-sections, a step-by-step
procedure is reported.

16.1 Pre-requisites.

In order to couple a newer application to the RAVEN code, some pre-requisites need to be satisfied.

Input
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The first pre-requisite is the knowledge of the input syntax of the application the developer wants
to couple. Indeed, RAVEN task “ends” at the Code Interface stage. RAVEN transfers the informa-
tion needed to perturb the input space into the Code interface and expects that the newly developed
Interface is able to perturb the input files based on the information passed through.
This means that the developer needs to code a Python-compatible parser of the system code input
(a module that is able to read and modify the input of the code that needs to be coupled).
For example, let’s suppose the input syntax of the code the developer needs to couple is as follows:

kewword1 = aValue1
kewword2 = aValue2
kewword3 = aValue3
kewword4 = aValue4

The Python input parser would be:

class simpleInputParser():
def __init__(self,filename):

#
# @ In, string, filename, input file name (with path)
#
self.keywordDictionary = {}
# open the file
fileobject = open(filename)
# store all the lines into a list
lines = fileobject.readlines()
# parse the list to construct
# self.keywordDictionary dictionary
for line in lines:

# split the line with respect
# to the symbol "=" and store the
# outcomes into the dictionary
# listSplitted[0] is the keword
# listSplitted[1] is the value
listSplitted = line.split("=")
keyword = listSplitted[0]
value = listSplitted[1]
self.keywordDictionary[keyword] = value

# close the file
fileobject.close()

def modifyInternalDictionary(self,inDictionary):
#
# @ In, dictionary {keyword:value},
# inDictionary, dictionary containing
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# the keywords to perturb
#

# we just parse the dictionary and replace the
# matching keywords
for keyword,newvalue in inDictionary.items():

self.keywordDictionary[keyword] = newvalue

def writeNewInput(self,filename):
#
# @ In, string, filename, newer input file name (with path)
#

# open the file
fileobject = open(filename)
# write line by line
for keyword,newvalue in self.keywordDictionary.items():

fileobject.write(keyword + ‘‘=’’ + str(newvalue) + ‘‘\n’’)
# close the file
fileobject.close()

Output

RAVEN is able to handle Comma Separated Value (CSV) files (as outputs of the system code).
In order make RAVEN able to retrieve the information from the newly coupled code, these files
need to be either generated by the system code itself or the developer needs to code a Python-
compatible module to convert the whatever code output format to a CSV one. This module can be
directly called in the new code interface (see following section).
Let’s suppose that the output format of the code (the same of the previous input parser example) is
as follows:

result1 = aValue1
result2 = aValue2
result3 = aValue3

The Python output converter would be as simple as:

def convertOutputFileToCSV(outputfile):
keywordDictionary = {}
# open the original file
fileobject = open(outputfile)
outputCSVfile = open (outputfile + ’.csv’)
# store all the lines into a list
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lines = fileobject.readlines()
# parse the list to construct
# self.keywordDictionary dictionary
for line in lines:

# split the line with respect
# to the symbol "=" and store the
# outcomes into the dictionary
# listSplitted[0] is the keword
# listSplitted[1] is the value
listSplitted = line.split("=")
keyword = listSplitted[0]
value = listSplitted[1]
keywordDictionary[keyword] = value

outputCSVfile.write(’,’.join(keywordDictionary.keys()))
outputCSVfile.write(’,’.join(keywordDictionary.values()))
outputCSVfile.close()

And the output CSV becomes:

result1, result2, result3
aValue1, aValue2, aValue3

16.2 Code Interface Creation

As already mentioned, RAVEN imports all the “Code Interfaces” at run-time, without actually
knowing the syntax of the driven codes. In order to make RAVEN able to drive a newer software,
the developer needs to code a Python module that will contain few methods (with strict syntax)
that are called by RAVEN during the simulation.
When loading a “Code Interface”, RAVEN expects to find, in the class representing the code, the
following functions:

from CodeInterfaceBaseClass import CodeInterfaceBase
class NewCode(CodeInterfaceBase):

def generateCommand(self, inputFiles, executable, flags = None)
def createNewInput(self, currentInputFiles, oriInputFiles,

samplerType, **Kwargs)
def finalizeCodeOutput(self, command, output, workingDir)
def getInputExtension(self)
def checkForOutputFailure(self, output, workingDir)
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In the following sub-sections all the methods are fully explained, providing examples (referring to
the simple code used as example for the previous sections)

16.2.1 Method: def generateCommand(self, inputFiles, executable)

The generateCommand method is used to retrieve the command (in string format) needed to
launch the driven Code and the root of the newer output (string). In other words, this method needs
to return a string containing the full command that the internal JobHandler is going to use to run
the Code this interface refers to. Hence, the return data type must be a TUPLE.
RAVEN is going to call this function passing in the following arguments:

• inputFiles, data type = list: List of input files (lenght of the list depends on the number of
inputs have been added in the Step is running this code);

• executable , data type = string, executable name with absolute path
(e.g. /home/path to executable/code.exe);

• flags , data type = string, a string containing the flags the user can specify in the input (e.g.
under the node < Code >< flags > −u− r < /flags >< /Code >).

For the example referred in the previous section, this method would be implemented as follows:

def generateCommand(self,inputFiles,executable,flags=None):
found = False
for index, inputFile in enumerate(inputFiles):

if inputFile.endswith(self.getInputExtension()):
found = True
break

if not found: raise Exception(‘‘NEWER CODE ERROR ->
None of the input files has one of the
following extensions ".i", ".inp"!’’)

outputfile = ’out˜’+
os.path.split(inputFiles[index])[1].split(’.’)[0]

if flags: precommand = executable + flags
else : precommand = executable
executeCommand = (precommand +

‘‘ -i ’’ +os.path.split(inputFiles[index])[1])
return executeCommand,outputfile
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16.2.2 Method: def createNewInput(self,currentInputFiles,
oriInputFiles, samplerType,**Kwargs)

The createNewInput method is used to generate an input based on the information RAVEN passes
in. In this function the developer needs to call the driven code input parser in order to modify the
input file, accordingly with respect to the variables RAVEN is providing. This method needs to
return a list containing the path and filenames of the modified input files. Note: RAVEN expects
that at least one input file of the original list gets modified and re-named.
RAVEN is going to call this function passing in the following arguments:

• currentInputFiles, data type = list: List of current input files (input files from last this
method call);

• oriInputFiles , data type = list, List of the original input files;

• samplerType , data type = string, Sampler type (e.g. MonteCarlo, Adaptive, etc.). Note: None
if no Sampler has been used;

• Kwargs , data type = kwarded dictionary, dictionary of parameters. In this dictionary there
is another dictionary called ”SampledVars” where RAVEN stores the variables that got sam-
pled (Kwargs[’SampledVars’] =¿ ’var1’:10,’var2’:40);

For the example referred in the previous section, this method would implemented as follows:

def createNewInput(self,currentInputFiles,
oriInputFiles,samplerType,**Kwargs):

for index, inputFile in enumerate(inputFiles):
if inputFile.endswith(self.getInputExtension()):
break

parser = simpleInputParser(currentInputFiles[index])
parser.modifyInternalDictionary(**Kwargs[’SampledVars’])
temp = str(oriInputFiles[index][:])
newInputFiles = copy.copy(currentInputFiles)
newInputFiles[index] = os.path.join(os.path.split(temp)[0],

Kwargs[’prefix’]+"˜"+os.path.split(temp)[1])
parser.writeNewInput(newInputFiles[index])
return newInputFiles

16.2.3 Method: getInputExtension(self, command, output, workingDir)

The getInputExtension function is an optional method. If present, it is called by RAVEN code
at run time. This function can be considered an utility method, since its main goal is to return a
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tuple of strings, where the developer can place all the input extensions the code interface needs to
support (i.e. the extensions of the input(s) the code interface is going to “perturb”). If this method
is not implemented, the default extensions are (“.i”,’ “.inp”, “.in”). This function does not accept
any input argument. For the example referred in the previous section, this method would imple-
mented as follows:

def getInputExtension(self):
return (‘‘.i’’,‘‘.input’’)

16.2.4 Method: finalizeCodeOutput(self, command, output, workingDir)

The finalizeCodeOutput function is an optional method. If present, it is called by RAVEN code
at the end of each run. It can be used for those codes, that do not create CSV files as output
to convert the whatever output format into a CSV. RAVEN checks if a string is returned; if so,
RAVEN interprets that string as the new output file name (CSV).
RAVEN is going to call this function passing in the following arguments:

• command, data type = string: the command used to run the just ended job;

• output, data type = string,the Output name root;

• workingDir, data type = string, current working directory.

For the example referred in the previous section, this method would implemented as follows:

def finalizeCodeOutput(self, command, output, workingDir)
outfile = os.path.join(workingDir,output+’.o’)
outputobj=convertOutputFileToCSV(outfile)

16.2.5 Method: checkForOutputFailure(self, output, workingDir)

The checkForOutputFailure function is an optional method. If present, it is called by RAVEN
code at the end of each run. This method needs to be implemented by the codes that, if a run fails,
return a “returncode” = 0. This can happen in those codes that record the failure of a run (e.g. not
converged, etc.) as normal termination (returncode == 0) This method can be used, for example,
to parse the outputfile looking for a special keyword that testifies that a particular job failed (e.g.
in RELAP5 would be the keyword ”********”). This method MUST return a boolean (True if
failed, False otherwise).
RAVEN is going to call this function passing in the following arguments:
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• output, data type = string,the Output name root;

• workingDir, data type = string, current working directory.

For the example referred in the previous section, this method would implemented as follows:

def checkForOutputFailure(self, command, output, workingDir)
from __builtin__ import any
errorWord = "ERROR"
return any(errorWord in x for x in

open(os.path.join(workingDir,output+’.o’),"r").readlines())
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A Appendix: Example Primer

In this Appendix, a set of examples are reported. In order to be as general as possible, the Model
type “ExternalModel” has been used.

A.1 Example 1.

This simple example is about the construction of a “Lorentz attractor”, sampling the relative input
space. The parameters that are sampled represent the initial coordinate (x0,y0,z0) of the attractor
origin.

<?xml version="1.0" encoding="UTF-8"?>
<Simulation debug="True">
<!-- RUNINFO -->
<RunInfo>

<WorkingDir>externalModel</WorkingDir>
<Files>lorentzAttractor.py</Files>
<Sequence>FirstMRun</Sequence>
<batchSize>3</batchSize>

</RunInfo>
<!-- STEPS -->
<Steps>

<MultiRun name=’FirstMRun’ re-seeding=’25061978’>
<Input class=’Files’ type=’’

>lorentzAttractor.py</Input>
<Model class=’Models’ type=’ExternalModel’

>PythonModule</Model>
<Sampler class=’Samplers’ type=’MonteCarlo’

>MC_external</Sampler>
<Output class=’Datas’ type=’Histories’

>testPrintHistories</Output>
<Output class=’DataBases’ type=’HDF5’

>test_external_db</Output>
<Output class=’OutStreamManager’ type=’Print’

>testPrintHistories_dump</Output>
</MultiRun >

</Steps>
<!-- MODELS -->
<Models>

<ExternalModel name=’PythonModule’ subType=’’
ModuleToLoad=’externalModel/lorentzAttractor’>
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<variable>sigma</variable>
<variable>rho</variable>
<variable>beta</variable>
<variable>x</variable>
<variable>y</variable>
<variable>z</variable>
<variable>time</variable>
<variable>x0</variable>
<variable>y0</variable>
<variable>z0</variable>

</ExternalModel>
</Models>
<!-- DISTRIBUTIONS -->
<Distributions>

<Normal name=’x0_distrib’>
<mean>4</mean>
<sigma>1</sigma>

</Normal>
<Normal name=’y0_distrib’>

<mean>4</mean>
<sigma>1</sigma>

</Normal>
<Normal name=’z0_distrib’>

<mean>4</mean>
<sigma>1</sigma>

</Normal>
</Distributions>
<!-- SAMPLERS -->
<Samplers>

<MonteCarlo name=’MC_external’ limit=’3’ >
<variable name=’x0’ >
<distribution >x0_distrib</distribution>

</variable>
<variable name=’y0’ >
<distribution >y0_distrib</distribution>

</variable>
<variable name=’z0’ >
<distribution >z0_distrib</distribution>

</variable>
</MonteCarlo>

</Samplers>
<!-- DATABASES -->
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<DataBases>
<HDF5 name="test_external_db"/>

</DataBases>
<!-- OUTSTREAMS -->
<OutStreamManager>

<Print name=’testPrintHistories_dump’>
<type>csv</type>
<source>testPrintHistories</source>

</Print>
</OutStreamManager>
<!-- DATA OBJECTS -->
<Datas>

<Histories name=’testPrintHistories’>
<Input>x0,y0,z0</Input>
<Output>time,x,y,z</Output>

</Histories>
</Datas>
</Simulation>

The Python ExternalModel is reported below:

import numpy as np

def run(self,Input):
max_time = 0.03
t_step = 0.01

numberTimeSteps = int(max_time/t_step)

self.x = np.zeros(numberTimeSteps)
self.y = np.zeros(numberTimeSteps)
self.z = np.zeros(numberTimeSteps)
self.time = np.zeros(numberTimeSteps)

self.x0 = Input[’x0’]
self.y0 = Input[’y0’]
self.z0 = Input[’z0’]

self.x[0] = Input[’x0’]
self.y[0] = Input[’y0’]
self.z[0] = Input[’z0’]
self.time[0]= 0
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for t in range (numberTimeSteps-1):
self.time[t+1] = self.time[t] + t_step
self.x[t+1] = self.x[t] + self.sigma*

(self.y[t]-self.x[t]) * t_step
self.y[t+1] = self.y[t] + (self.x[t]*

(self.rho-self.z[t])-self.y[t]) * t_step
self.z[t+1] = self.z[t] + (self.x[t]*

self.y[t]-self.beta*self.z[t]) * t_step

A.2 Example 2.

This example shows a slightly more complicated example, that employs the usage of:

• Samplers: Grid and Adaptive;

• Models: External, Reduce Order Models and Post-Processors;

• OutStreams: Prints and Plots;

• Data Objects: TimePointSets;

• Functions: ExternalFunctions.

The goal of this input is to compute the “SafestPoint”. It provides the coordinates of the farthest
point from the limit surface that is given as an input. The safest point coordinates are expected val-
ues of the coordinates of the farthest points from the limit surface in the space of the “controllable”
variables based on the probability distributions of the “non-controllable” variables.

The term “controllable” identifies those variables that are under control during the system op-
eration, while the “non-controllable” variables are stochastic parameters affecting the system be-
haviour randomly.

The “SafestPoint” post-processor requires the set of points belonging to the limit surface, which
must be given as an input.

<Simulation debug="True">

<!-- RUNINFO -->
<RunInfo>

<WorkingDir>SafestPointPP</WorkingDir>
<Sequence>pth1,pth2,pth3,pth4</Sequence>
<batchSize>50</batchSize>
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</RunInfo>

<!-- STEPS -->
<Steps>

<MultiRun name = ’pth1’ pauseAtEnd = ’False’>
<Sampler class = ’Samplers’ type = ’Grid’

>grd_vl_ql_smp_dpt</Sampler>
<Input class = ’Datas’ type = ’TimePointSet’

>grd_vl_ql_smp_dpt_dt</Input>
<Model class = ’Models’ type = ’ExternalModel’

>xtr_mdl</Model>
<Output class = ’Datas’ type = ’TimePointSet’

>nt_phy_dpt_dt</Output>
</MultiRun >

<MultiRun name = ’pth2’ pauseAtEnd = ’True’>
<Sampler class = ’Samplers’ type = ’Adaptive’

>dpt_smp</Sampler>
<Input class = ’Datas’ type = ’TimePointSet’

>bln_smp_dt</Input>
<Model class = ’Models’ type = ’ExternalModel’

>xtr_mdl</Model>
<Output class = ’Datas’ type = ’TimePointSet’

>nt_phy_dpt_dt</Output>
<SolutionExport class = ’Datas’ type = ’TimePointSet’

>lmt_srf_dt</SolutionExport>
</MultiRun>

<PostProcess name=’pth3’ pauseAtEnd = ’False’>
<Input class = ’Datas’ type = ’TimePointSet’

>lmt_srf_dt</Input>
<Model class = ’Models’ type = ’PostProcessor’

>SP</Model>
<Output class = ’Datas’ type = ’TimePointSet’

>sfs_pnt_dt</Output>
</PostProcess>

<OutStreamStep name = ’pth4’ pauseAtEnd = ’True’>
<Input class = ’Datas’ type = ’TimePointSet’

>lmt_srf_dt</Input>
<Output class = ’OutStreamManager’ type = ’Print’

>lmt_srf_dmp</Output>
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<Input class = ’Datas’ type = ’TimePointSet’
>sfs_pnt_dt</Input>
<Output class = ’OutStreamManager’ type = ’Print’

>sfs_pnt_dmp</Output>
</OutStreamStep>

</Steps>

<!-- DATA OBJECTS -->
<Datas>

<TimePointSet name = ’grd_vl_ql_smp_dpt_dt’>
<Input>x1,x2,gammay</Input>
<Output>OutputPlaceHolder</Output>

</TimePointSet>

<TimePointSet name = ’nt_phy_dpt_dt’>
<Input>x1,x2,gammay</Input>
<Output>g</Output>

</TimePointSet>

<TimePointSet name = ’bln_smp_dt’>
<Input>x1,x2,gammay</Input>
<Output>OutputPlaceHolder</Output>

</TimePointSet>

<TimePointSet name = ’lmt_srf_dt’>
<Input>x1,x2,gammay</Input>
<Output>g_zr</Output>

</TimePointSet>

<TimePointSet name = ’sfs_pnt_dt’>
<Input>x1,x2,gammay</Input>
<Output>p</Output>

</TimePointSet>
</Datas>

<!-- DISTRIBUTIONS -->
<Distributions>

<Normal name = ’x1_dst’>
<upperBound>10</upperBound>
<lowerBound>-10</lowerBound>

<mean>0.5</mean>
<sigma>0.1</sigma>
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</Normal>

<Normal name = ’x2_dst’>
<upperBound>10</upperBound>
<lowerBound>-10</lowerBound>
<mean>-0.15</mean>
<sigma>0.05</sigma>

</Normal>

<Normal name = ’gammay_dst’>
<upperBound>20</upperBound>
<lowerBound>-20</lowerBound>
<mean>0</mean>
<sigma>15</sigma>

</Normal>
</Distributions>

<!-- SAMPLERS -->
<Samplers>

<Grid name = ’grd_vl_ql_smp_dpt’>
<variable name = ’x1’ >

<distribution>x1_dst</distribution>
<grid type = ’value’ construction = ’equal’ steps = ’10’

upperBound = ’10’>2</grid>
</variable>
<variable name=’x2’ >

<distribution>x2_dst</distribution>
<grid type = ’value’ construction = ’equal’ steps = ’10’

upperBound = ’10’>2</grid>
</variable>
<variable name=’gammay’ >

<distribution>gammay_dst</distribution>
<grid type = ’value’ construction = ’equal’ steps = ’10’

lowerBound = ’-20’>4</grid>
</variable>

</Grid>

<Adaptive name = ’dpt_smp’ debug=’True’>
<ROM class = ’Models’ type = ’ROM’

>accelerated_ROM</ROM>
<Function class = ’Functions’ type = ’External’

>g_zr</Function>
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<TargetEvaluation class = ’Datas’ type = ’TimePointSet’
>nt_phy_dpt_dt</TargetEvaluation>

<Convergence limit = ’3000’ forceIteration = ’False’ weight
= ’none’ persistence = ’5’>1e-2</Convergence>
<variable name = ’x1’>
<distribution>x1_dst</distribution>

</variable>
<variable name = ’x2’>
<distribution>x2_dst</distribution>

</variable>
<variable name = ’gammay’>
<distribution>gammay_dst</distribution>

</variable>
</Adaptive>

</Samplers>

<!-- MODELS -->
<Models>

<ExternalModel name = ’xtr_mdl’ subType = ’’ ModuleToLoad =
’SafestPointPP/safest_point_test_xtr_mdl’>
<variable>x1</variable>
<variable>x2</variable>
<variable>gammay</variable>
<variable>g</variable>

</ExternalModel>

<ROM name = ’accelerated_ROM’ subType = ’SciKitLearn’>
<Features>x1,x2,gammay</Features>
<Target>g_zr</Target>
<SKLtype>svm|SVC</SKLtype>
<kernel>rbf</kernel>
<gamma>10</gamma>
<tol>1e-5</tol>
<C>50</C>

</ROM>

<PostProcessor name=’SP’ subType=’SafestPoint’>
<!-- List of Objects (external with respect to this PP)

needed by this post-processor -->
<Distribution class = ’Distributions’ type =

’Normal’>x1_dst</Distribution>
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<Distribution class = ’Distributions’ type =
’Normal’>x2_dst</Distribution>

<Distribution class = ’Distributions’ type =
’Normal’>gammay_dst</Distribution>

<!- end of the list -->
<controllable>

<variable name = ’x1’>
<distribution>x1_dst</distribution>
<grid type = ’value’ steps = ’20’>1</grid>

</variable>
<variable name = ’x2’>

<distribution>x2_dst</distribution>
<grid type = ’value’ steps = ’20’>1</grid>

</variable>
</controllable>
<non-controllable>

<variable name = ’gammay’>
<distribution>gammay_dst</distribution>
<grid type = ’value’ steps = ’20’>2</grid>

</variable>
</non-controllable>

</PostProcessor>
</Models>

<!-- FUNCTIONS -->
<Functions>

<External name=’g_zr’
file=’SafestPointPP/safest_point_test_g_zr.py’>
<variable>g</variable>

</External>
</Functions>

<!-- OUT-STREAMS -->
<OutStreamManager>

<Print name = ’lmt_srf_dmp’>
<type>csv</type>
<source>lmt_srf_dt</source>

</Print>

<Print name = ’sfs_pnt_dmp’>
<type>csv</type>
<source>sfs_pnt_dt</source>
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</Print>
</OutStreamManager>

</Simulation>

The Python ExternalModel is reported below:

def run(self,Input):
self.g = self.x1+4*self.x2-self.gammay

The “Goal Function”,the function that defines the transitions with respect the input space coordi-
nates, is as follows:

def __residuumSign(self):
if self.g<0 : return 1
else : return -1
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